

B&Q Cricklewood

Surface Water Drainage Strategy

Montreaux Cricklewood Developments Limited

Project number: 60608627

July 2020

Table of Contents

Exe	cutive Summary	5
1.	Introduction	6
1.1.	Background	6
1.2.	Site Location	6
2.	Planning Policy	6
3.	Site Description	7
3.1.	Topography	7
3.2.	Geology and Hydrogeology	7
3.3.	Flood Risks	7
4.	Existing Drainage	8
5.	Proposed Surface Water Drainage	9
5.1.	Managing Surface Water and SuDS	9
5.2.	Pre and Post Development Peak Flow Rates	11
5.3.	Pre and Post Development Run off Volume	11
5.4.	Proposed Surface Water Strategy	11
6.	Surface Water Quality Control	13
7.	Indicative Maintenance Plan	16
•	Drainage and Manhole Chamber Maintenance	
Attenu	uation Storage Tanks	16
Flow	Control Device	17
Perma	avoid	
8.	Other Considerations	19
8.1.	Adoption	
8.2.	Manhole and Inspection Chambers	
8.3.	Connection of Private Drains	
8.4.	Consultation	
9.	Conclusion	
App	endix A TWUL Asset Records	21
App	endix B Microdrainage Calculation	22
Appe	endix C Proposed Drainage Layout	23
Appe	endix D LBB SuDS Proforma	24
Appe	endix E TWUL Correspondences	25
Appe	endix F Proposed Development	26

Figures

Figure 15	Site Location	ĉ
-----------	---------------	---

Tables

Table 1. Existing surface water runoff rate	8
Table 2 SuDS hierarchy and proposed use in the development	10
Table 3: Summary of existing and proposed peak discharge rates	11
Table 4 Summary of existing and proposed areas	11
Table 5. Proposed SuDs	12
Table 6 Pollution Hazard Indices for Different Land Use Classes	
Table 7 Pollution Hazard Indices for Proposed Development	15
Table 8 SuDS Mitigation Indices for Discharges to Surface Water Sewers	
Table 9: Maintenance Schedule Piped Drainage and Manhole Chambers	
Table 10: Maintenance Schedule Attenuation tanks	
Table 11: Maintenance Schedule Hydrobrake or Vortex Flow Control Device	
Table 12: Maintenance Schedule Permavoid System	

Acronyms

Acronym	Description		
AOD	Above Ordnance Datum		
EA	Environment Agency		
FRA	Flood Risk Assessment		
FSUA	Foul Sewerage and Utilities Assessment		
ha	Hectare		
LBB	London Borough of Barnet		
m	metres		
mAOD	meter Above Ordnance Datum		
m ²	square metres		
RMA	Reserved Matters Application		
SWDS	Surface Water Drainage Strategy		
SuDS	Sustainable urban Drainage System		
TWUL	Thames Water Utilities Limited		

Executive Summary

AECOM has been commissioned by Montreaux Cricklewood Developments Limited to undertake a Surface Water Drainage Strategy (SWDS) as part of the outline planning application to London Borough of Barnet (LBB).

The Proposed Development consists of:

"Outline planning application for the demolition of existing buildings and comprehensive redevelopment of the Site for a mix of uses including residential and flexible commercial and community floorspace in uses classes A3/B1/D1 and D2; associated access; car and cycle parking; landscaping; and associated works."

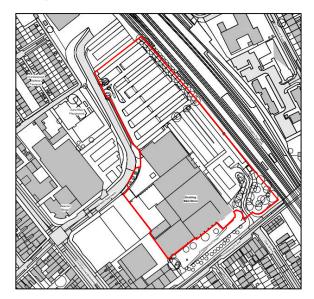
The Site is located within the administrative jurisdiction of the London Borough of Barnet (LBB), adjacent to Cricklewood railway station (postcode NW2 1ES, National Grid Reference TQ 23857 85892). The Site is bounded by Kara Way and Campion Terrace to the north, national railway lines and Cricklewood railway station to the east, Cricklewood Lane to the south and Deport Approach / Cricklewood Broadway (A5) to the west. The Site area is approximately 2.78 ha. Figure 1 below shows the Site boundary.

The SWDS has been prepared in accordance with good practice, the LBB SuDS Proforma and other relevant policy and design standards and is based upon the scheme shown on illustrative drawings. This strategy provides an overview of the measures that are expected to be incorporated into the Proposed Development, to control and manage surface water runoff in accordance with current good practice and policy.

The information contained within the SWDS should be read in conjunction with the AECOM Flood Risk Assessment and Foul Sewage & Utilities Assessment report submitted as part of this outline planning application.

The SWDS can be summarised as follows:

- Sustainable Drainage System (SuDS) will be implemented where practicable to provide source control, improve water quality and quantity, reduce flood risk and provide amenity and biodiversity benefits;
- The surface water runoff will discharge at equivalent greenfield runoff rate in compliance with the London Plan and LBB Local Plan;
- The surface water runoff will discharge to the nearest Thames Water surface water sewer in line with the discharge hierarchy set out in Building Regulations Part H;
- The use of the SuDS Manual Simple Index Approach (SIA) demonstrates that the design approach is appropriate and water quality will be sufficiently improved;
- An outline maintenance plan have been prepared which should be developed further at future Reserved Matters Applications (RMA) stage;
- The detailed drainage design should be informed by a ground investigation, drainage and CCTV survey and detail design of the Proposed Development; and
- All surface water runoff will be managed on Site to ensure no increase to flood risk to third party land.


1. Introduction

1.1. Background

- 1.1.1. AECOM has been commissioned by Montreaux Cricklewood Developments Limited to undertake a Surface Water Drainage Strategy (SWDS) as part of the outline planning application to London Borough of Barnet (LBB).
- 1.1.2. The Proposed Development consists of :
 - "Outline planning application for the demolition of existing buildings and comprehensive redevelopment of the Site for a mix of uses including residential and flexible commercial and community floorspace in uses classes A3/B1/D1 and D2; associated access; car and cycle parking; landscaping; and associated works."
- 1.1.3. The information contained within the SWDS should be read in conjunction with the AECOM Flood Risk Assessment and Foul Sewage & Utilities Assessment report submitted as part of this outline planning application.

1.2. Site Location

1.2.1. The Site is located within the administrative jurisdiction of the London Borough of Barnet (LBB), adjacent to Cricklewood railway station (postcode NW2 1ES, National Grid Reference TQ 23857 85892). The Site is bounded by Kara Way and Campion Terrace to the north, national railway lines and Cricklewood railway station to the east, Cricklewood Lane to the south and Cricklewood Broadway (A5) to the west. The Site area is approximately 2.78 ha. Figure 1 below shows the Site boundary(see Figure 1 below).

Figure 1 Site Location

1.2.2. The Site is currently occupied by a range of retail outlets, including a large B&Q DIY Store, Pound Stretcher and Tile Depot. These large warehouse buildings are situated in the south-west of the Site. The northern and eastern parts of the Site mainly consist of car parking associated with the previously identified retail outlets, as well as soft landscaping adjacent to the railway lines, and the southern entrance to the Site.

2. Planning Policy

2.1.1. Refer to AECOM FRA report which lists out all planning policy considered.

3. Site Description

3.1. Topography

3.1.1. The Proposed Development Site covers approximately 2.78ha and exists currently as developed brownfield land occupied by warehouse buildings and car parks. The topography of the Site varies between 52.10mAOD to the south of the Site and 56.08mAOD to the north of the Site.

3.2. Geology and Hydrogeology

- 3.2.1. There are no record of superficial deposits within the Site. The Site is underlain by London Clay Formation. The Geo-environmental Investigation and Assessment by Capita (2018) reports the results from an intrusive Site investigation carried out. The Site mainly comprised of hardstanding, typically tarmac with a layer of Made Ground and London Clay Formation.
- 3.2.2. The Site is not located within a groundwater source protection zone. The bedrock and superficial hydrogeology are classified as unproductive. The borehole records from the Site investigation do not record any groundwater encountered. The nearby borehole records from the British Geological Survey (BGS) map do not record any groundwater encountered.

3.3. Flood Risks

3.3.1. The Site is located in Flood Zone 1, defined by the EA as land assessed as less than 0.1% (or 1 in 1000 year) probability of flooding each year. Refer to AECOM Flood Risk Assessment (FRA) report for further information.

4. Existing Drainage

- 4.1.1. The Site is approximately 2.78 ha and is mainly hardstanding with soft landscaping areas adjacent the railway lines and southern entrance to the Site. The Thames Water Utilities Limited (TWUL) asset records (Appendix A) indicates a 300mm surface and foul water sewer in Cricklewood Lane. There are no historical records of on Site drainage, therefore, connections to TWUL sewers cannot be confirmed.
- 4.1.2. Based on TWUL asset records, it is assumed that surface and foul water from the Site discharges to the 300mm surface and foul water sewer in Cricklewood Lane. The number of outfalls from the Site are unknown at this stage. There does not appear to be any attenuation facility or flow control devices on Site to restrict discharge of surface water from the Site. A drainage and CCTV survey of on Site drainage is required to confirm these assumptions in future Reserved Matters applications.
- 4.1.3. Where the actual flows are unknown and in absence of information on existing drainage network, the existing surface water discharge rates have been calculated based on Modified Rationale Method:

$$Q = 2.78 \times Cv \times Cr \times i \times A$$

Where Cv (volumetric runoff coefficient) is 0.84 and Cr (routing coefficient) is 1.3 as recommended by the Wallingford Procedure, A is the catchment area in hectares (2.78ha) assumed 100% impermeable as the Site is largely brownfield and i is the average rainfall intensity in mm/hr.

4.1.4. The existing unrestricted run-off rate at 1 in 2, 1 in 30 and 1 in 100-year storm event is calculated as shown in the following table.

Table 1. Existing surface water runoff rate

Return Period	i, Average Rainfall Intensity, 15 min storm duration (mm/hr)	Q, Runoff rate (I/s)
1 in 2	37.179	314.90
1 in 30	96.481	817.17
1 in 100	128.917	1091.90

4.1.5. In absence of historical drainage records and existing building layouts, the existing foul water flow rates are unknown. The Site is currently occupied by commercial and industrial warehouses. The Proposed Development will comprise of residential units and commercial areas. Therefore, proposed foul water discharge rates are expected to be higher. Refer to AECOM Foul Sewage and Utilities assessment Report (FSUA) for further information on foul drainage.

5. Proposed Surface Water Drainage

5.1. Managing Surface Water and SuDS

- 5.1.1. Surface water drainage can be managed by minimising surface run-off from development Sites through the use of Sustainable Drainage Systems (SuDS). AECOM, the Environmental Agency (EA) and the London Borough of Barnet (LBB) encourage the use of SuDS to prevent the water environment being adversely affected by increased surface water runoff, to manage the risk of pollution and reduce both on and off Site flooding.
- 5.1.2. The Building Regulations Part H 2015 stipulates that rainwater from roofs and paved areas is carried away from the surface to discharge to one of the following, listed in order of priority:
 - An adequate soakaway or some other adequate infiltration system, or where that is reasonably practicable;
 - · A watercourse, or where that is not practicable; and
 - A sewer
- 5.1.3. The Geo-environmental investigation and assessment carried out by Capita (2018) indicates the Site consists of Made Ground underlain by London Clay. There may be potential contamination on Site as the historical land use consisted of rail sidings and warehouse. Therefore, the Site is deemed to be unsuitable for infiltration into the ground. However, infiltration with shallow geo-cellular attenuation have been considered in parts of the Site where feasible. There are no watercourses near the Site to facilitate surface water discharge. Therefore, it is proposed that the surface water runoff from the Site will discharge to the 300mm diameter TWUL surface water sewer in Cricklewood Lane.
- 5.1.4. SuDS will be used where practicable throughout the Site to provide source control, improve water quality, reduce flood risk and provide amenity and biodiversity. Table 2 below shows the SuDS hierarchy and the proposed use on the development. Where it is not possible, reasons have been given.

Table 2 SuDS hierarchy and proposed use in the development

SuDS Method	Water Quantity Benefit	Water Quality Benefit	Amenity Benefit	Biodiversity Benefit	Practicable	Potential Use in Development and Reasons
Store Rainwater for later use (rainwater harvesting, blue roofs)	√	√	N/A	N/A	√	The use of Rainwater Harvesting should be considered at the next design stage
Use Infiltration techniques	✓	✓	N/A	N/A	✓	Based on the currently available information this option appears unfeasible. However, this option should be considered at the next design stage and only discounted upon review of the results from the forthcoming ground investigation works.
Green/Brown Roofs	✓	√	✓	✓	✓	Biodiverse roofs are proposed.
Filter strips such as 'French Drains' and 'Rain Gardens'	✓	✓	✓	√	✓	Raingardens proposed to parts of soft landscaping areas.
Ponds or Open Water Features for Gradual Release to Watercourse	√	Limited	√	✓	✓	Ponds and open water features are considered not feasible due to space constraints
Attenuate rainwater by storing in tanks or sealed water features for gradual release to a watercourse	✓	N/A	N/A	Limited	✓	Permavoid geocellular storage for uses below car parking areas and above ground podium areas and above ground parking areas are proposed. Geocellular tanks system are proposed.
Discharge rainwater direct to a watercourse	√	N/A	N/A	N/A	✓	There are no nearby watercourses located in the vicinity of the Site.
Discharge rainwater to a surface water sewer	√	N/A	N/A	N/A	√	The Site will discharge rainwater from the roofs and hard standing area to nearest TWUL surface water sewer.
Discharge rainwater to a combined sewer.	N/A	N/A	N/A	Limited	X	No combined sewers are located in the vicinity of the Site.

5.2. Pre and Post Development Peak Flow Rates

- 5.2.1. The proposed surface water drainage will be designed to achieve Greenfield run-off rate for the developed Site up to 1 in 100 year return period. The Greenfield run-off rate is calculated using the FEH method as set out in Table 24.1 of CIRIA C753 The SuDS Manual.
- 5.2.2. Table 3 below provides a summary of existing and proposed peak discharge rates for different return periods.

Table 3: Summary of existing and proposed peak discharge rates

Return Period	Existing discharge rate (I/s)	Proposed discharge rate (l/s/ha) (Greenfield)	Proposed discharge rate (I/s) (Greenfield)
1:2	314.90	5.4	15.01
1:30	817.17	13.2	36.70
1:100	1091.90	18.8	52.26
1:100 + 40% CC	1091.90	18.8	52.26

5.3. Pre and Post Development Run off Volume

5.3.1. Table 4 below provides a summary of approximate existing and proposed hard and soft landscaping areas.

Table 4 Summary of existing and proposed areas

	Existing (ha)	Proposed (ha)
Hard Landscaping Area	1.92	1.00
Soft Landscaping Area	0.19	0.50
Building Footprint	0.77	1.38

5.3.2. The hard and soft landscaping areas shown above are based on previous site area (2.88 ha). Nevertheless, the Proposed Development will reduce the overall impermeable area by introducing SuDs and increasing extent of soft landscaping area to control the surface water run off at source and reduce run off volume from the Site.

5.4. Proposed Surface Water Strategy

- 5.4.1. The surface water from the Site is proposed to discharge by gravity to the existing TWUL surface water sewer located in Cricklewood Lane. It is assumed there are existing outfalls and connections to the TWUL surface water sewer in Cricklewood Lane. The proposed surface water drainage network will aim to reuse existing outfall and connection to TWUL sewer. A drainage and CCTV survey is required at the RMA stage to confirm existing outfalls and connections to the TWUL surface water sewer.
- 5.4.2. The surface water runoff from the Site will be restricted to Greenfield run-off rates up to 1 in 100 year return period as this can be achieved for the Proposed Development considering the spatial constraint on Site. The surface water will be restricted using a vortex flow control device. A surface water attenuation of approximately 2100m³ is required on Site to restrict the surface water to a maximum discharge rate of 52.26 l/s in a 1 in 100 year + 40% climate change event. Microdrainage calculations are provided in Appendix B.
- 5.4.3. The surface water run off will be attenuated both above and below ground. Biodiverse roof and permeable paving with shallow geocellular attenuation are proposed at roof and podium level. Raingardens, soft landscaping, permeable car parks and geocellular attenuation tanks are proposed below ground. Appendix C shows the proposed surface and foul water drainage strategy. The LBB SuDS proforma is completed and attached in Appendix D.
- 5.4.4. Table 5 below provides a summary of attenuation via different SuDS proposed on Site. Attenuation volume proposed on site is based on previous site area of 2.88 ha as this provides a worst case scenario. Section 6 provides guidance on the maintenance of SuDs in accordance to the SuDs Manual.

Table 5. Proposed SuDs

SuDS	Attenuation Volume (m³)
Biodiverse Roof with 150mm blue roof system	355
Rain Garden	42
Permeable Paving – Podium Level	172
Permeable Paving – Ground Level	182
Geocellular Tanks	1676.7
Total	2427.7

- 5.4.5. The Proposed Development will be split across three phases. The surface water from phase one of the development is proposed to be collected by private below ground drainage network and discharge by gravity to the TWUL surface water sewer in Cricklewood Lane.
- 5.4.6. The surface water from Phase 2 of the development will connect to the Phase 1 private below ground drainage network and utilise the Phase 1 outfall/connection.
- 5.4.7. The surface water from Phase 3 of the development will connect to Phase 2 private below ground drainage network and utilise the Phase 1 outfall/connection. Below ground attenuation tanks, permeable paving and biodiverse roof will be used to attenuate the surface water for all three phases. Below ground attenuation tanks will be built as part of Phase 1 and 2 and will therefore be oversized to allow for Phase 3 surface water runoff.

6. Surface Water Quality Control

- 6.1.1. SuDS provide natural variability in their ability to remove contamination from surface water runoff which drains across a Site, therefore the management of water quality is founded on a risk-based approach. The current SuDS Manual (C753) suggests a risk-based approach based on land use type and specific contaminants.
- 6.1.2. The SuDS Manual (C753), Table 26.1 suggests a Simple Index Approach (SIA) for low risk developments, which follows a three-step process, namely:
 - Allocate suitable pollution hazard indices for the proposed land use;
 - Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index; and
 - Where the discharge is protected surface waters or groundwater, consider the need for a more precautionary approach.
- 6.1.3. To successfully deliver adequate treatment, the chosen SuDS components should have a total pollution mitigation index that equals or exceeds the pollution hazard index.

Total SuDS mitigation index ≥ Pollution hazard index

Table 6 Pollution Hazard Indices for Different Land Use Classes

Land Use	Pollution Level	Hazard	Total Suspended Solids (TSS)	Metals	Liquid Hydrocarbons (Free Floating Oils)
Residential Roofs	Very Low		0.2	0.2	0.05
Other Roofs (typically commercial/industrial roofs)	Low		0.3	0.2 (up to 0.8 where there is potential for metals to leach from roof)	0.05
Individual Property driveways, residential car parks. Low traffic roads (e.g. cul-de-sacs, homezones and general access roads) and non- residential car parks with infrequent change (e.g. schools, offices) – i.e. <300 traffic movements/day.	Low		0.5	0.4	0.4
Commercial Yard and delivery areas, non-residential parking with frequent change (e.g. hospitals/retail); all roads except low traffic roads and trunk roads/ motorways ¹	Medium		0.7	0.6	0.7
Sites with heavy pollution (e.g. haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste Sites); Sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial Site; trunk roads and motorways. ¹	High		0.82	0.82	0.92

Notes

Motorways and trunk roads should follow the guidance and risk assessment process set out in Highways Agency (2009).

These should only be used if considered appropriate as part of a detailed risk assessment –required for all these land use types (see also SuDS manual Table 4.3). When dealing with high hazard Sites, the environmental regulator should first be consulted for pre-permitting advice. This will help to determine the most appropriate treatment approach to the development of a design solution.

Where a Site land use falls outside the defined categories, the indices should be adapted (and agreed with the drainage approving body) or else a more detailed risk assessment method should be adopted). Equivalent indices should be developed for other contaminants of interest for any given Site.

Source: Table 26.2 in CIRIA C753

6.1.5. Table 7 below (reproduced from Table 26.2 within CIRIA C753) provides the initial basis for determining the appropriate levels of treatment regarding the proposed land use categories.

6.1.6. Given the nature of the Proposed Development, AECOM considers that the pollution hazard indices shown in Table 7 below:

Table 7 Pollution Hazard Indices for Proposed Development

Area	Pollution Hazard Level	TSS	Metals	Liquid Hydrocarbons
Residential Roofs	Very Low	0.2	0.2	0.05
Individual Property driveways, residential car parks. Low traffic roads (e.g. cul-de-sacs, homezones and general access roads) and non-residential car parks with infrequent change (e.g. schools, offices) – i.e. <300 traffic movements/day.	Low	0.5	0.4	0.4
Commercial Yard and delivery areas, non-residential parking with frequent change (e.g. hospitals/retail); all roads except low traffic roads and trunk roads/ motorways ¹	Medium	0.7	0.6	0.7

- 6.1.7. The surface water runoff from the roofs, podiums, pedestrian areas and areas subject to low vehicular traffic volumes has a low pollution hazard level. For the parking and delivery areas the pollution hazard level is considered medium. This assessment of pollution hazard levels is subject to confirmation and review of future Reserved Matters applications as the land uses are more clearly defined.
- 6.1.8. In addition, petrol interceptors will be proposed where the pollution hazard is medium/high to filter out hydrocarbon pollutants from the rainwater runoff before discharging the outfalls and to minimise the impact of the Proposed Development on the environment.
- 6.1.9. The different SuDS mitigation indices for each type of SuDS component are identified in Table 8 below (reproduced from Table 26.3 in C753).

Table 8 SuDS Mitigation Indices for Discharges to Surface Water Sewers

Type of SuDS Components	TSS	Metals	Liquid Hydrocarbons
Permeable Paving	0.7	0.6	0.7

6.1.10. The proposed drainage strategy outlined in Section 5 is considered to be suitably conservative and water quality from the roof areas and areas of hardstanding will be sufficiently improved before discharge to TWUL surface water sewer, as the mitigation indices are greater than or equal to the pollution indices. This will be further reviewed in future Reserved Matters applications to ensure compliance.

7. Indicative Maintenance Plan

- 7.1.1. The ongoing management and maintenance of the proposed surface water drainage systems will fall under the responsibility of the Site owner.
- 7.1.2. Best practice maintenance information is provided within the CIRIA SUDS Manual, excerpts of which have been included below.
 - 1. Regular Maintenance
 - 2. Occasional Maintenance
 - 3. Remedial Actions

Piped Drainage and Manhole Chamber Maintenance

- 7.1.3. Drainage infrastructure covered in this section includes all privately-owned manholes, manhole fittings and surrounding pipework, gullies and drainage channels. Correct operation of this drainage infrastructure allows collection and transportation of water.
- 7.1.4. It is the responsibility of the developer to extend and maintain their drainage network. Right of access is granted by the Applicant.

Table 9: Maintenance Schedule Piped Drainage and Manhole Chambers

Maintenance Schedule	Required Action	Frequency
Before Start up	Removal of any inappropriate material from within the chamber and dispose off-Site to a suitable licenced Site.	At Start
	All pipe lines to be flushed with water to remove silt and check for blockages	At Start
Regular Maintenance	Removal of debris (which could include leaves, rubbish, branches) from areas served by drainage (where it may cause risk to performance)	Monthly
Remedial Actions	For blockages resulting in flooded manhole chambers, drain down manhole chamber and unblock	As required
	For pipe blockages, rod or jet clean between access points to unblock	As required
Monitoring	Lift covers and inspect chambers. Inspect covers, surrounding gullies and drainage channels for signs of damage and incorrect operation. If required, undertake remedial action.	As required

Attenuation Storage Tanks

7.1.5. The function of the attenuation tanks is to collect and store water prior to discharging to the combined sewers in the vicinity of the Site.

Table 10 refers to the maintenance procedure highlighted in the SuDS Manual.

Table 10: Maintenance Schedule Attenuation tanks

(Source: SuDS Manual - Table 21.3)

Maintenance Schedule	Required Action	Frequency
Regular Maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for three months, then annually
	Removal of debris from the catchment surface (where it may cause risk to performance)	Monthly
	Remove sediment from pre-treatment structures	Annually or as required
Remedial Actions	Repair of inlets, outlets, overflows and vents	As required
Monitoring	Inspect and check all inlets, outlets and vents to ensure that they are in good condition and operating as designed allowing surface water to be stored.	Annually
	Survey inside of tank for sediment build-up and remove if necessary. This is dependent upon the design style of the tank	Every 5 years or as required

Flow Control Device

7.1.6. The flow control device is located at the end of the system to restrict flows surface water flows from the Site.

Table 11: Maintenance Schedule Hydrobrake or Vortex Flow Control Device

(Source: http:/www.hydro-international.biz)

Maintenance Schedule	Required Action	Frequency
Before Start	Removal of any inappropriate material from within the chambers and dispose off- Site	At Start
Regular Maintenance (as per manufacturer's requirements)	Removal of debris (which could include leaves, rubbish and branches) from areas served by the drainage (where it may cause risk to performance)	Monthly
Remedial Actions	For blockages resulting in flooded manhole chambers, drain down manhole chamber and unblock	As required
Monitoring	Inspect unit and hose down is required	Monthly at the start for three months, then six monthly

Permavoid

7.1.7. The Permavoid system is proposed to collect surface water runoff from external paving. The table below shows the Maintenance Plan for Permavoid system.

Table 12: Maintenance Schedule Permavoid System

(Source: Permavoid System Technical Manual, Section 7 Delivery, installation & maintenance)

Maintenance Schedule	Required Action	Frequency
Before Start	A pre-handover inspection should be carried out and the Permavoid system cleaned prior to final handover	At Start
Regular Maintenance (as per manufacturer's requirements)	Remove litter and blockages as required; records of inspections and maintenance undertaken should be kept by the client	As required
	Inspect all chambers for silt and oil build up; sweep external surfaces	Every 12 months
Remedial Actions	A spillage kit appropriate to the size of the road surfaces should be kept by the Site caretaker. This should include absorbent pads, socks and rain seals.	As required
	As soon as a spillage is identified, the drain inlets in that area should be covered to prevent pollution entering the system. The pollution should then be cleared from the road surface. The local channel system and/or Permaceptor receiving the spillage should be emptied of all pollution that has entered.	
	The Environment Agency (EA) should be informed of the spillage and the appropriate actions should be taken.	
Monitoring	Inspections of channels, road/yard gullies for signs of blockage and oil spillage	3 monthly

8. Other Considerations

8.1. Adoption

- 8.1.1. Owing to the layout and nature of the Proposed Development, TWUL is unlikely to adopt the drainage on this Site. It is anticipated drainage on Site will be maintained by the developer.
- 8.1.2. However, the sewer connections will be adopted by TWUL under S106 Consent to Connect agreement.

8.2. Manhole and Inspection Chambers

- 8.2.1. Manholes shall be provided at each change of pipe gradient or horizontal alignment and otherwise at intervals of approx. 90-100m in accordance with Sewers for Adoption and Building Regulations Part H as appropriate.
- 8.2.2. Inspection chambers shall be provided in accordance with Sewers for Adoption and Building Regulations Part H.

8.3. Connection of Private Drains

8.3.1. Design of lateral connections and demarcation chambers shall be in accordance with Sewers for Adoption. In general, all drainage will be designed to adoptable standards, where possible.

8.4. Consultation

- 8.4.1. TWUL have been consulted to confirm sewer capacity. The proposed surface water discharge rate will be agreed via the planning application.
- 8.4.2. A S106 Consent to Connect application will need to be submitted to TWUL for the proposed connections in future Reserved Matters applications.
- 8.4.3. Proposed drainage design will need to be issued to Building Control in future Reserved Matters applications.

9. Conclusion

- 9.1.1. AECOM has been commissioned by Montreaux Cricklewood Developments Limited to undertake a Surface Water Drainage Strategy (SWDS) as part of the outline planning application to London Borough of Barnet (LBB).
- 9.1.2. The Proposed Development consists of:
 - "Outline planning application for the demolition of existing buildings and comprehensive redevelopment of the Site for a mix of uses including residential and flexible commercial and community floorspace in uses classes A3/B1/D1 and D2; associated access; car and cycle parking; landscaping; and associated works."
- 9.1.3. The SWDS has been prepared in accordance with good practice, the LBB SuDS Proforma and other relevant policy and design standards and is based upon the Parameter Plans and Illustrative Masterplan. This strategy provides an overview of the measures that are expected to be incorporated into the Proposed Development, to control and manage surface water runoff in accordance with current good practice and policy.
- 9.1.4. The information contained within the SWDS should be read in conjunction with the AECOM Flood Risk Assessment and Foul Sewage & Utilities Assessment report submitted as part of this outline planning application.
- 9.1.5. The SWDS can be summarised as follows:
 - Sustainable Drainage System (SuDS) will be implemented where practicable to provide source control, improve water quality and quantity, reduce flood risk and provide amenity and biodiversity benefits.
 - The surface water runoff will discharge at equivalent greenfield runoff rate in compliance with the London Plan and LBB Local Plan.
 - The surface water runoff will discharge to the nearest Thames Water surface water sewer in line with the discharge hierarchy set out in Building Regulations Part H.
 - The use of the SuDS Manual Simple Index Approach (SIA) demonstrates that the design approach is appropriate and water quality will be sufficiently improved.
 - An outline maintenance plan has been prepared which should be developed further in future Reserved Matters applications.
 - The detailed drainage design should be informed by a ground investigation, drainage and CCTV survey and Proposed Development future Reserved Matters applications.
 - All surface water runoff will be managed on Site to ensure no increase to flood risk to third party land.

Appendix A TWUL Asset Records

Atkins Telecoms Stats Enquiries Team The Hub 500Park Avenue BRISTOL BS32 4RZ

Search address supplied Site off Cricklewood Lane, Brent Cross

NW2 1ES

Your reference 77572

Our reference ALS/ALS Standard/2019_4038957

Search date 12 July 2019

Keeping you up-to-date

Notification of Price Changes

From 1 September 2018 Thames Water Property Searches will be increasing the price of its Asset Location Search in line with RPI at 3.23%.

For further details on the price increase please visit our website: www.thameswater-propertysearches.co.uk Please note that any orders received with a higher payment prior to the 1 September 2018 will be non-refundable.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Search address supplied: Site off Cricklewood Lane, Brent Cross, NW2 1ES

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: searches@thameswater.co.uk

Web: www.thameswater-propertysearches.co.uk

Waste Water Services

Please provide a copy extract from the public sewer map.

The following quartiles have been printed as they fall within Thames' sewerage area:

TQ2386SW TQ2486SW TQ2385NE TQ2485NW TQ2386SE

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts
 or highway drains. If any of these are shown on the copy extract they are shown for
 information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

The following quartiles have been printed as they fall within Thames' water area:

TQ2386SW

TQ2486SW TQ2385NE TQ2485NW TQ2386SE

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public
 water mains in the vicinity of the property. It should be possible to estimate the
 likely length and route of any private water supply pipe connecting the property to
 the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

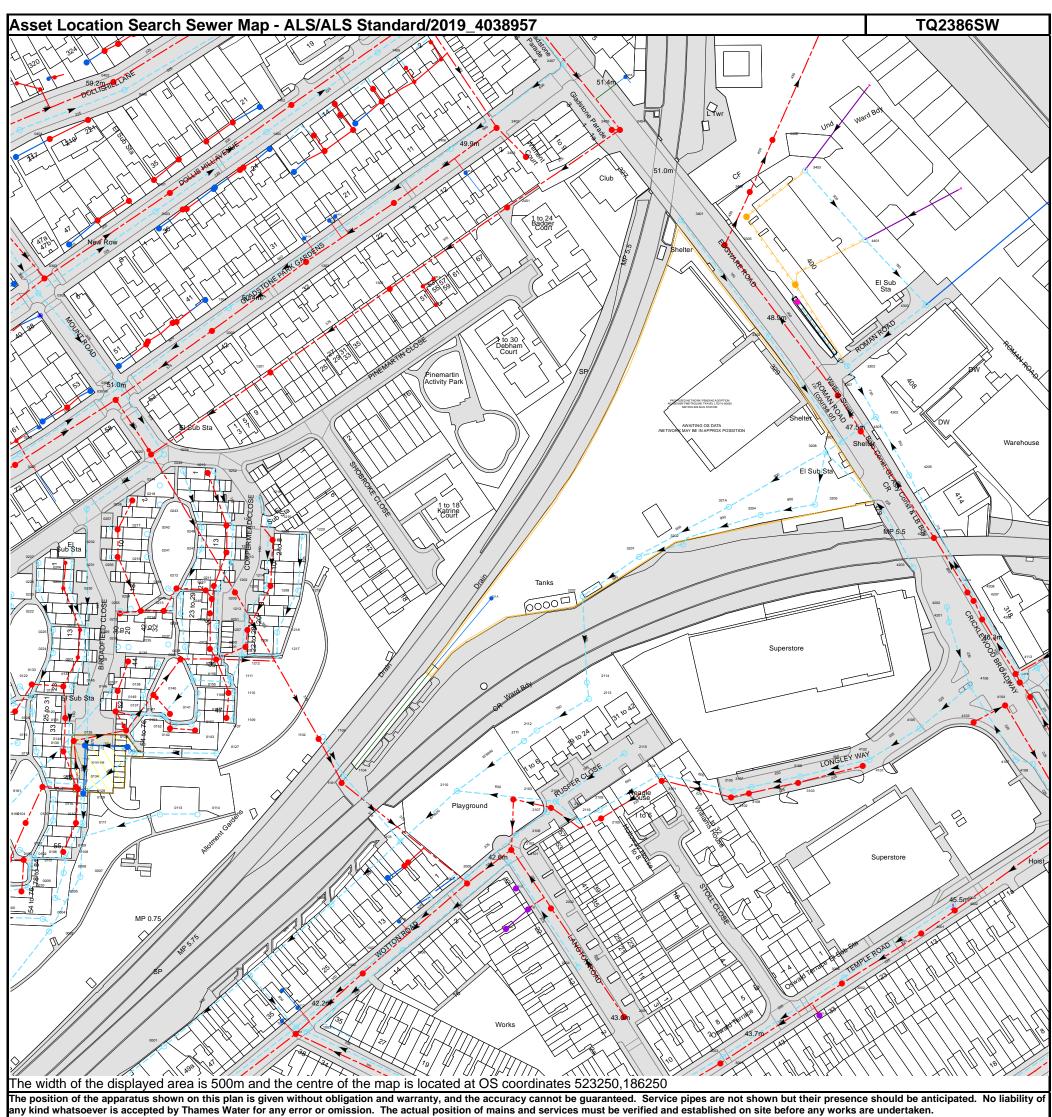
Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk


Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk

ed on the Ordnance Survey Man with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Convight Reserved

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4101 4108	45.58	42.68
4106	46.9 46.63	45.89 45.12
4102	45.65	43.15
4105	45.69	43.53
4103	n/a	n/a
4104 4109	46.48 46.51	44.7 45.69
4106	46.11	43.87
4110	.01	n/a
4112	46.7	45.02
4111 4113	46.43	45.68 45.05
101D	47.35 n/a	n/a
1003	42.15	40.78
1102	44.49	40.58
1105	44.48	42.3
1008 1101	n/a	n/a n/a
1101	n/a n/a	n/a
1002	42.29	39.9
1007	n/a	n/a
10CE	n/a	n/a
101B	n/a	n/a
1103 1006	n/a 42.35	n/a 41
11BC	142.35 n/a	41 n/a
11BD	n/a	n/a
20CH	n/a	n/a
20CA	n/a	n/a
2110	43.95	41.45
2005 2003	n/a 42.6	n/a 40.19
2003 201A	42.0 n/a	140.19 n/a
2101	42.62	41.27
2102	42.59	40.41
2103	n/a	n/a
2106 201C	n/a	n/a
2111	n/a 43.7	n/a n/a
201B	n/a	n/a
2112	43.39	41.99
2107	n/a	n/a
2002	42.72	40.66
2104 2108	43.14 43.24	39.99 42.46
2004	42.85	41.58
2116	n/a	n/a
2114	45.02	42.27
2113	43.49	41.89
2109 2105	44.73 44.73	41.69 42.45
2001	43.05	41.12
2115	n/a	n/a
3104	n/a	n/a
3101	n/a	n/a
3001 3003	43.6 43.55	41.77 42.23
3102	45.59	42.23
3105	45.57	42.53
3108	n/a	n/a
3107	n/a	n/a
3103 3106	45.6 45.63	42.43 42.86
301A	n/a	n/a
3002	44.46	42.66
3004	44.43	43.11
4001	45.04	43.21
4002 4003	45.32 45.31	43.47 43.96
04FH	145.31 n/a	43.96 n/a
04EB	n/a	n/a
04FA	n/a	n/a
04EC	n/a	n/a
0402 04ED	n/a n/a	n/a
04ED 0405	n/a 58.7	n/a 57
04EE	n/a	n/a
04DB	n/a	n/a
14GG	n/a	n/a
14GF	n/a	n/a
1404 14FH	52.66 n/a	50.7 n/a
1402	52.35	10/a 49.5
14DD	n/a	n/a
14DG	n/a	n/a
14DF	n/a	n/a
14DE 14EB	n/a n/a	n/a
14EB 14EE	n/a n/a	n/a n/a
1405	51.56	50.04

Manhala Bafaranaa	Manhala Cayar Layal	Manhala Invert Lavel
Manhole Reference 14ED	Manhole Cover Level	Manhole Invert Level
14EH	n/a	n/a
14EG	n/a	n/a
24CC 24CB	n/a n/a	n/a n/a
2406	49.82	48.01
2402	50.25	47.56 48.53
2407 2405	51.26 51.18	48.52 n/a
2404	51.11	41.48
241B 3406	n/a n/a	n/a n/a
14DA	n/a	n/a
1219	n/a	n/a
1220 141A	n/a n/a	n/a n/a
1303	50.39	47.27
14DC	n/a	n/a
141B 141C	n/a n/a	n/a n/a
1403	50.1	47.3
1302	n/a	n/a
1401 131A	50.03 n/a	47.39 n/a
231A	n/a	n/a
231B 241A	n/a n/a	n/a n/a
221A	n/a n/a	n/a
2401	n/a	n/a
2403 2201	49.66 44.66	47.83 42.83
3201	44.85	43.3
3401	50.57	49.43
3202 3305	n/a 50.01	n/a 45.21
321A	45.6	43.72
3402	n/a	n/a
3204 3302	45.57 49.04	43.94 47.85
0212	n/a	n/a
0239 0245	n/a n/a	n/a n/a
0243	n/a	n/a
0247	n/a	n/a
0248 0210	n/a n/a	n/a n/a
0219	n/a	n/a
0208	n/a	n/a
0209 0211	n/a n/a	n/a n/a
0252	n/a	n/a
0251 1202	n/a n/a	n/a n/a
1204	n/a	n/a
1203	n/a	n/a
1210 1211	n/a n/a	n/a n/a
1205	46.92	40.75
1213	n/a	n/a
1207 1216	n/a n/a	n/a n/a
1214	n/a	n/a
1215 1208	n/a n/a	n/a n/a
1209	n/a	n/a
1218	n/a	n/a
3310 3403	n/a 50.8	45.54 45
3205	46.2	44.14
3206 3307	46.55 48	44.28 45.34
3307	48 47.76	45.34 44.33
3303	48.51	44.83
4301 4401	47.559 50.98	45.069 45.22
4302	47.94	44.64
4205	47.22	n/a
4203 4303	n/a 51	n/a 45.03
4209	46.44	45.52
4202 4201	46.18 46.05	44.66 44.19
4201 421A	16.05 n/a	144.19 n/a
4208	46.21	45.6
4207 4206	46.23 46.27	45.62 45.64
0132	n/a	n/a
0130	n/a	n/a
0131 0144	n/a n/a	n/a n/a
0145	n/a	n/a
0135	45.71	42.69
0129	n/a	n/a

Manhala Pafaransa	Manhala Cayor Layal	Manholo Invert Lovel
Manhole Reference	Manhole Cover Level	Manhole Invert Level
0128	44.64	42.71
0134	44.92	43.35
n/a 0228	n/a n/a	n/a n/a
n/a	n/a	n/a
0146 0157	46.93 47.18	43.6 n/a
0137	n/a	n/a
0138	n/a	n/a
0236 0136	n/a 46.11	n/a 42.6
n/a	n/a	n/a
0235	n/a	n/a
0139 0147	n/a 46.4	n/a 44.05
0126	45.68	43.9
0149 0140	n/a 46.07	n/a 41.93
0150	n/a	n/a
0113	n/a	n/a
0151 0237	46.62 n/a	44.89 n/a
0142	n/a	n/a
0141	n/a	n/a
0152 0202	n/a 47.12	n/a 42.37
0238	n/a	n/a
0153 0156	n/a 46.75	n/a 44.41
0143	46.75 n/a	n/a
0154	n/a	n/a
0114 0155	n/a n/a	n/a n/a
0207	n/a	n/a
0127	n/a	n/a
0250 0203	n/a 46.86	n/a 42.19
1201	n/a	n/a
1107 1108	n/a n/a	n/a n/a
1111	46.51	44.53
1109	n/a	n/a
1110 1212	n/a 46.44	n/a 44.71
1206	n/a	n/a
1217	n/a	n/a
0123 0124	n/a n/a	n/a n/a
0119	n/a	n/a
0122 0133	n/a n/a	n/a n/a
0121	n/a	n/a
0120	n/a	n/a
0118 0105	n/a 44.5	n/a 42.95
0117	44.42	43.66
0224 0116	n/a n/a	n/a
0002	n/a	n/a n/a
0004	43.56	42.85
0005 0010	43.33 n/a	42.16 n/a
0009	n/a	n/a
0007	43.51 43.39	41.58
0008 0101	43.39 n/a	42.4 n/a
0102	n/a	n/a
0103 0108	43.89 43.63	42.44 42.46
0106	43.87	42.73
0109	n/a	n/a
0107 0110	n/a n/a	n/a n/a
0111	n/a	n/a
0104 0115	44.07 n/a	43.1 n/a
0001	n/a	n/a n/a
1001	42.09	39.73
1004 101A	42.08 n/a	40.38 1.4
101C	n/a	n/a
1005	n/a	n/a
03ED 0301B	n/a 51.18	n/a 46.89
03EC	n/a	n/a
0304 1301	51.19 n/a	45.8 n/a
03CA	n/a	n/a
03CB	n/a	n/a
03CC 0302	n/a 50.77	n/a 47.11
03CD	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
03EA	n/a	n/a
1304	50.56	46.57
03DI	n/a	n/a
03EH	n/a	n/a
04BB	n/a	n/a
04DG	n/a	n/a
0403	54.14	52.67
04BF	n/a	n/a
04BG	n/a	n/a
04DF	n/a	n/a
0401	53.92	50.34
04BC	n/a	n/a
04BI	n/a	n/a
04DD	n/a	n/a
14GA	n/a	n/a
14GB	n/a	n/a
04DC	n/a	n/a
0205	n/a	n/a
0206	n/a	n/a
0230	n/a	n/a
0231	n/a	n/a
0232 0204	n/a n/a	n/a n/a
0204	n/a n/a	n/a n/a
0229	17/a 49.2	n/a 44.88
0257	n/a	n/a
0256	n/a	n/a
0217	n/a	n/a
0216	n/a	n/a
0215	n/a	n/a
0255	n/a	n/a
0258	n/a	n/a
0254	n/a	n/a
0218	n/a	n/a
0214	n/a	n/a
0241	n/a	n/a
0242	n/a	n/a
0220	49.42	40.96
0243	n/a	n/a
0244	n/a	n/a
0234	49.35	45.26
0213	n/a	n/a
0246	n/a	n/a
0240	n/a	n/a
0305	55.54	53.43
03BF	n/a	n/a
0303	55.59	51.17
04EI	n/a	n/a
04EJ 0404	n/a 60.97	n/a 59.17
0404 04FG	60.97 n/a	59.17 n/a
04FG 04FF	n/a n/a	n/a n/a
041A	n/a	n/a
0225	n/a	n/a
0223	n/a	n/a
0223	n/a	n/a
0226	n/a	n/a
0227	n/a	n/a
0221	51.01	47.3
0253	51.02	46.9
03DB	n/a	n/a
03CJ	n/a	n/a
03CF	n/a	n/a

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4004	62.19	60.89
4104	63.81	62.48
4103	63.766	58.296
4102	63.58	59.24
4106 4006	63.71 62.44	61.96 61.39
4110	63.5	60.35
4003	62.6	61.6
4101	.01	n/a
4109 4002	63.48 63.44	61.63 62.64
4105	n/a	n/a
411A	n/a	n/a
4005	64.02	62.3
301A 3001	n/a 61.44	n/a 58.84
3002	61.43	59.73
2005	61.52	59.52
2001	61.52	58.42
1001 1006	57.38 .01	54.83 52.93
201B	n/a	n/a
201A	n/a	n/a
1420	56.44	55.777
142N 141V	56.44 56.505	55.601 55.705
141V 142M	56.555	56.1
2401	60	56.85
141H	56.44	55.222
2404 141W	59.99 56.505	57.14 55.705
141W	56.44	55.222
142D	56.755	55.955
142Z	56.755	56.155
141X	56.505 56.505	55.705 55.705
141Y 142C	56.755	55.955
141Z	56.505	55.705
142L	56.505	55.772
142B 142A	56.655 56.655	55.855 55.855
142A 142T	56.655 56.705	56.25
142J	56.505	56.2
142K	56.555	56
042D	56.405	55.172 55.405
042N 143E	56.355 56.505	55.405 55.705
0420	56.355	55.405
0411	56.505	55.734
042P	56.355	55.405
143D 041C	56.505 56.13	55.705 54.805
042C	56.505	55.705
042F	56.13	54.939
041H	56.555	56
041B 042U	56.14 111.61	54.689 56.205
042G	56.14	54.839
042T	111.61	56.205
042S	111.61 111.61	56.205 56.205
042R 041Q	111.61 56.205	56.205 55.6
042Q	111.61	56.205
041S	56.255	55.6
1401 1402	56.8 56.87	55 55.33
041Z	55.9	55.3 55.3
043B	56.905	55.105
043A	56.905	55.105
041V 042A	56.105 56.255	55.055 55.6
041W	55.9	55.3
041Y	55.9	55.3
043C	56.905 56.955	55.105
042B 0401	56.255 55.5	55.4 53.1
0402	55.43	53.78
041X	55.9	55.3
042Z	56.105 56.105	54.029
041U 042X	56.105 56.205	54.705 55.405
042X 042Y	56.205	55.405
041E	56.205	54.086
042E	55.105 55.405	54.306
041D 041T	55.105 56.225	54.144 55.1
041A	55.105	54.189
041R	56.205	55.067
042W	56.205	56.205
042V	111.61	56.205

[
Manhole Reference	Manhole Cover Level 56.805	Manhole Invert Level 56.005
141J	56.655	55.855
141R	56.805	56.005
241A 141C	n/a 56.555	n/a 55.456
141S	56.805	56.005
141K 141D	56.655 56.555	55.855 55.539
142Q	56.555	55.785
2402 142F	59.32 56.755	57.32 55.955
2403	59.27	57.72
141L	56.655	55.855
142U 142R	56.505 56.555	55.617 55.885
142G	56.755	55.955
141E 142Y	56.555 56.665	55.456 56.25
142P	56.59	55.574
141B 142H	56.59 56.755	54.939 55.955
143A	56.555	56
141T	56.505	55.705
141F 142I	56.555 56.755	55.605 55.955
141U	56.505	55.705
142E 031C	56.755 56.655	55.955 56.1
032D	56.355	55.855
032J	56.355	55.555
032C 131E	56.355 56.655	55.855 55.855
0310	56.555	55.755
032B 131F	56.355 56.655	55.855 55.855
031F	n/a	55.605
032A	56.355	55.855
031J 031Z	56.655 56.355	56.1 55.855
031G	56.555	55.605
131G 031N	56.255 56.555	55.855 55.755
041K	56.705	56.1
143F	56.255	55.855
042H 041L	56.255 56.355	55.855 53.8
041G	56	55.684
043D 041N	56.505 56.405	55.705 55.8
043E	56.505	55.705
041M	56.405	55.634
042L 042M	56.355 56.355	55.405 55.405
043F	56.505	55.705
032O 032N	n/a n/a	n/a n/a
041F	56.255	53.92
0306	57.12 56.405	55.49
031M 042K	56.405 56.355	55.417 55.555
042J	56.355	55.555
031L 042I	56.405 56.355	55.8 55.555
0305	57.22	53.25
041J 032M	56.355 56.355	55.184 55.555
032L	56.355	55.555
032K	56.355 57.35	55.555 55.45
0301 0303	57.35 57.38	55.15 55.15
0304	57.31	53.43
031A 031B	56.565 56.565	54.809 55.417
0302	57.47	53.96
032E	56.615 56.615	55.705
032F 031D	56.615 n/a	55.705 n/a
031Y	56.655	55.855
031X 131D	56.655 56.705	55.855 56.1
032G	56.355	55.555
031W 031V	56.655 56.655	55.855 55.855
031V 031K	56.355	55.855 55.7
032H	56.355	55.555
031P 031Q	56.48 56.255	55.339 55.262
031U	56.655	55.855
031E	56.48 56.255	55.189 55.056
031H 031T	56.255 56.655	55.056 55.855
0321	56.355	55.555
031S	56.655	55.855

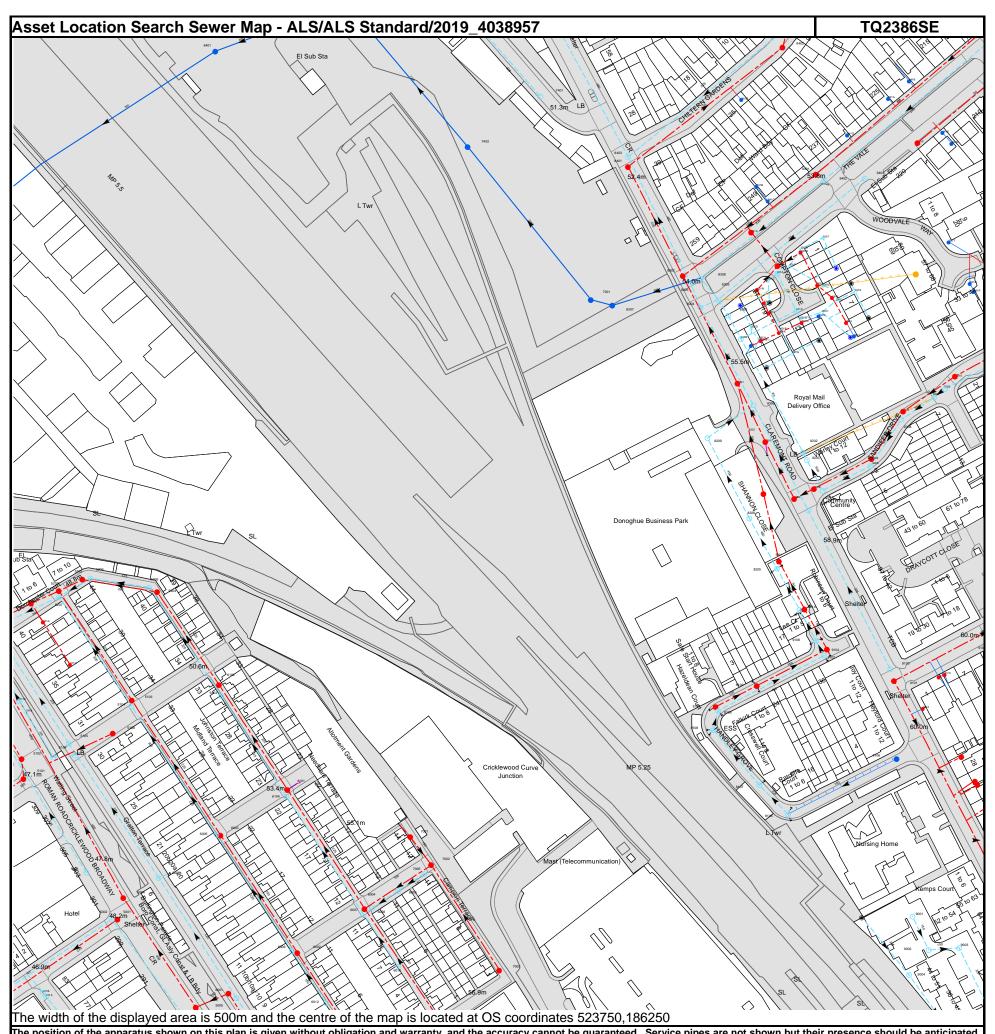
Manhole Reference	Manhole Cover Level	Manhole Invert Level
031I	56.655	55.75
031R	56.655	55.855
421A 2202	n/a 61.77	n/a 59.12
221A	n/a	n/a
3202 4202	63 65.32	59.8 62.9
4201	65.31	58.74
221B	n/a	n/a
321F 3203	n/a 64.96	n/a 62.81
3201	64.91	58.87
421B 4305	n/a n/a	n/a n/a
4304	n/a	n/a
331B 4303	n/a n/a	n/a n/a
2302	60.01	57.91
4301 3302	63.06 62.44	59.31 59.79
3301	62.33	58.89
3403	61.34	60.19
3402 4401	61.37 .01	59.62 n/a
441B	n/a	n/a
4402 441A	.01 n/a	n/a n/a
3401	59.91	56.06
3404	59.8 61.05	56.3 58.05
2201 1204	61.05 59.47	58.05 57.47
1203	59.08	56.68
1201 1301	59.05 58.94	56.6 56.94
2303	59.06	55.6
231A 1302	n/a 57.45	n/a 54.13
2301	60.01	57.86
1306	58.25	54.74
1307 1305	58.33 58.17	54.66 54.97
131C	56.855	55.149
131B 131A	56.705 56.705	55.301 56.1
143C	56.855	55.364
143B 141O	56.705 56.655	55.584 55.855
1410 141N	56.655	55.855
141A	56.59	54.695
142X 141P	n/a 56.805	n/a 56.005
142S	56.59	55.46
141I 141Q	56.655 56.805	55.855 56.005
141M	56.655	55.855
142V 0202	56.755 59.55	55.524 57.4
0201	59.58	56.18
4302 344D	.01	n/a n/a
211D 2102	n/a .01	n/a n/a
211E	n/a	n/a
311G 3105	n/a .01	n/a n/a
311D	n/a	n/a
311F 3106	n/a .01	n/a n/a
311E	n/a	n/a
3104 3107	64.46 64.45	58.86 58.55
311E	n/a	n/a
321A	n/a	n/a
311B 3108	n/a 64.19	n/a 59.29
311C	n/a	n/a
321B 3102	n/a 64.22	n/a 59.49
3103	64.22	58.43
321E 321C	n/a n/a	n/a n/a
3109	63.51	59.88
3101	63.45	59.84
321D 4107	n/a 63.41	n/a 60.12
4108	63.45	60.5
4112 4001	63.45 62.14	60.15 60.89
001A	n/a	60.89 n/a
001B	n/a	n/a
0101 0102	59.97 59.95	55.82 57.2
101B	n/a	n/a
101A	n/a	n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
101C	n/a	n/a
1004	59	n/a
2006	.01	n/a
2002	.01	n/a
1007	59.48	56.63
2004	60.11	59.21
1103	60.12	54.77
1002	59.83	58.52
2008	59.97	58.47
1003	59.72	55.47
201C	n/a	n/a
2003	.01	n/a
2007	60.69	59.34
n/a	n/a	n/a
n/a	n/a	n/a
2101	60.8	59.25
2104	61.34	56.29
2103	60.69	57.19
2105	60.64	59.09
211B	n/a	n/a
211A	n/a	n/a
211C	n/a	n/a
111A	n/a	n/a
111A	n/a	n/a
1102	60.37	58.62
1101	60.33	57.43

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
981G	n/a	n/a
981D	n/a	n/a
9801	51.81	49.24
9805 981A	51.77 n/a	48.32 n/a
9901	n/a	54.47
9903	n/a	54.42
981B	n/a	n/a
9904 9902	n/a n/a	55.52 56
9516	48.63	46.13
9510	46.53	44.85
951C 9507	n/a 48.45	n/a 47.37
9507	n/a	47.37 n/a
9520	n/a	n/a
9519	n/a	n/a
9503 9502	48.84 48.84	n/a 45.54
9521	n/a	n/a
9512	48.39	46.59
961B	n/a	n/a
8609 961A	48.64	n/a
961C	n/a n/a	n/a n/a
8606	48.53	46.65
8612	48.53	47.12
8607 8611	48.33 48.34	47.27 47.06
8602	48.49	47.06 n/a
8610	48.86	n/a
8601	48.49	45.77
8613 8608	.01 48.55	n/a n/a
861A	n/a	n/a
9601	50.46	49.29
9702	.01	n/a
9703 971A	.01 n/a	n/a n/a
971B	n/a	n/a
9701	50.33	n/a
971C	n/a	n/a
871B 871C	n/a n/a	n/a n/a
9811	n/a	n/a
9803	.01	n/a
9802	50.98	46.76
9804 981C	51.05 n/a	49.98 n/a
981F	n/a	n/a
981E	n/a	n/a
9504 951E	45.76 n/a	43.95 n/a
9501B	n/a	n/a
9505	45.32	42.96
9501A	n/a	n/a
951B 951A	n/a n/a	n/a n/a
9506	48.89	47.37
9509	45.6	43.19
6905 6901	52.86 50.91	50.96 n/a
6901 6906	52.84	n/a 51.14
6902	55.6	53.95
6904	55.98	53.98
7901 7004	56.69 .01	55.15 n/a
5702	47.65	44.6
5801	47.21	46.07
58CH	n/a 49.17	n/a 44.97
5901 5903	48.17 47.72	44.97 46.61
5902	49.75	47.44
5802	49.67	48.63
58BF 5904	n/a 50.48	n/a 49.72
58BE	n/a	19.72 n/a
6804	49.79	47.2
6806	n/a	n/a
6807 6801	n/a 51.33	n/a 49.07
6808	n/a	n/a
6903	51.6	46.14
6802	50.95	50.06
6810 6809	n/a n/a	n/a n/a
6803	51.71	50.74
6702	49.94	47.25
6704	49.79 51.90	48.7
6805	51.89	50.39

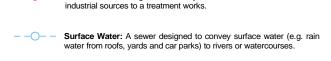
Manhole Reference	Manhole Cover Level	Manhole Invert Level
681A	n/a	n/a
781A	n/a	n/a
7801 7803	50.57 .01	47.93 n/a
7802	50.73	49.53
7711 7705	49.97	49.03 47.14
7705 7712	49.76 49.82	147.14 n/a
771J	n/a	n/a
771D 981K	n/a n/a	n/a n/a
981J	n/a	n/a
761B 7701	n/a 48.15	n/a 45.74
771C	n/a	n/a
8703 7707	48.81 n/a	47.34 n/a
7702	48.46	46.05
8704	48.87	47.52
8702 771G	48.87 n/a	n/a n/a
8705	n/a	n/a
771A 8701	n/a 48.87	n/a 46.05
8707	.01	n/a
8706 771H	n/a n/a	n/a n/a
8708	n/a .01	n/a n/a
7703	n/a	n/a
7704 7708	n/a 48.86	n/a 47.67
6703	49.04	47.9
6701 7709	n/a 49.53	n/a 48.18
7710	n/a	n/a
771F	n/a	n/a
771B 7706	n/a 49.76	n/a n/a
771I	n/a	n/a
5607 5602	46.13 46.04	44.91 43.6
5609	45.82	44.68
5603 5604	45.92 45.9	43.89 43.31
5610	45.82	44.68
5605 5611	45.95 45.06	44.28 44.84
5606	45.96 47.13	44.92
5703	47.41	46.39
5701 5704	47.44 47.45	45.41 46.43
5705	47.62	46.83
571A 7507	n/a 46.78	n/a n/a
7506	46.78	43.71
7604 7508	47.4 46.78	n/a 45.28
7603	47.4	44.33
761A	n/a	n/a
7605 8604	n/a 48.26	n/a n/a
851B	n/a	n/a
85BJ 8603	n/a n/a	n/a n/a
85BI	n/a	n/a
8605 85BH	48.3 n/a	45.84 n/a
86DH	n/a n/a	n/a n/a
55FC	n/a	n/a
55EG 55FD	n/a n/a	n/a n/a
55EI	n/a	n/a
5503 55DF	44.66 n/a	43.16 n/a
55DI	n/a	n/a
55DG 55DJ	n/a n/a	n/a n/a
55DD	n/a	n/a n/a
55EA	n/a	n/a
55DE 55EB	n/a n/a	n/a n/a
5502	45.38	42.94
55DC 55EC	n/a n/a	n/a n/a
551A	n/a	n/a
551B	n/a	n/a
551C 561A	n/a n/a	n/a n/a
561B	n/a	n/a
5601 5608	46.05 46.07	43.51 44.88
861C	n/a	n/a
86DG	n/a	n/a


Manhole Reference	Manhole Cover Level	Manhole Invert Level
86DF	n/a	n/a
86DE	n/a	n/a
851C	n/a	n/a
86DD	n/a	n/a
86DC	n/a	n/a
86DB	n/a	n/a
851A	n/a	n/a
861B	n/a	n/a
8501	47.35	44.23
8502	47.33	45.94
951D	n/a	n/a
961D	n/a	n/a
6604	46.45	45.33
6504	n/a	n/a
661A	n/a	n/a
6603	46.34	45.07
661B	n/a	n/a
6605	46.91	45.69
6601	46.86	45.04
66CD	n/a	n/a
66CJ	n/a	n/a
66DC	n/a	n/a
6506	45.19	44.1
66DF	n/a	n/a
6503	45.23	42.51
6602	n/a	n/a
7501	46.17	44.06
76FC	n/a	n/a
76EG	n/a	n/a
7601	47.16	44.77
7602	47.48	45.96
76EF	n/a	n/a
76EE	n/a	n/a
76ED	n/a	n/a
7503	45.35	n/a
7502	45.35	42.28
7505	46.3	n/a
7504	46.3	43.23
55FA	n/a	n/a
55EH	n/a	n/a
55FB	n/a	n/a
55EJ	n/a	n/a
6505	45.08	43.71
6502	44.98	43.02
6501	45.15	42.96
5501	44.24	41.75
The position of the apparatus shown on this plan i		Coming the second Coming the second

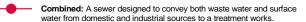
Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4902	62.14	59.64
4905	62.07	60.22
4903	64.25	62.1
4904 3803	64.24 .01	62.64 n/a
3801	59.64	57.49
2803	56.37	54.18
481A 381C	n/a n/a	n/a n/a
381D	n/a	n/a
381E	n/a	n/a
381F 381B	n/a	n/a
381G	n/a n/a	n/a n/a
381A	n/a	n/a
3811	n/a	n/a
381H 381J	n/a n/a	n/a n/a
3802	59.14	55.83
3804	59.12	56.57
3902 3901	58.3 58.24	n/a n/a
4906	61.41	60.11
4901	61.44	59.44
2902	59.18	57.23
2901 2801	n/a 56.27	n/a 52.77
251B	n/a	n/a
2601	55.73	n/a
2501 2602B	55.91 55.72	50.62 54.47
3502 3502	55.72 n/a	n/a
3701	57.7	n/a
3601 471B	57.82	54.07
471B 471C	n/a n/a	n/a n/a
4702	60.6	57.45
471A	n/a	n/a
4701 4501	60.74 58.19	56.91 54.7
4504	60.1	59.06
4502	60.59	56.71
4503 0904	60.83 53.68	58.44 n/a
0907	54.02	52.9
0910	53.89	50.59
0906	54.04	51.95
0908 0905	.01 54.02	n/a 52.72
0909	55.12	n/a
181A	n/a	n/a
1903 1804	55.98 54.3	52.23 52.15
191A	n/a	n/a
1904	56.05	54
1901 181B	56.27 n/a	54.32 n/a
1802	54.22	51.07
1805	54.29	n/a
1905	56.33 56.71	54.48
1902 1906	56.71 56.81	54.71 54.81
291B	n/a	n/a
291A	n/a	n/a
2802 2804	.01 56.37	n/a n/a
0702	.01	n/a
071F	n/a	n/a
0604B 0606	51.85 51.79	50.6 47.29
071E	51.79 n/a	47.29 n/a
0601A	51.78	n/a
0601B	51.15	48.32
1503 1801	51.25 54.44	48.59 51.64
1803	54.63	52.73
171A	n/a	n/a
171B 161A	n/a n/a	n/a n/a
2701	54.67	52.04
2704	54.77	52.92
261A 261B	n/a	n/a
261B 261C	n/a n/a	n/a n/a
261D	n/a	n/a
261E	n/a	n/a
261F 261G	n/a n/a	n/a n/a
2703	54.99	53.24
2702	54.99	52.78


Manhole Reference	Manhole Cover Level	Manhole Invert Level
261H	n/a	n/a
2611	n/a	n/a
251A	n/a	n/a
1502	51.43	n/a
0802	50.7	50
0803	50.71	48.72
0914	n/a	54.2
0913	n/a	55.63
0801	51.11	49.56
0901	51.16	50.16
0915	n/a	54.1
0924	n/a	n/a
0916	n/a	54
0918	n/a	51.66
0917	n/a	n/a
0911	53.57	50.37
0902	54.02	52.9
0903	53.57	51.54
0602	50.84	49.36
0605	.01	n/a
061A	n/a	n/a
0603A	51.46	n/a
071C	n/a	n/a
071B	n/a	n/a
071A	n/a	n/a
071D	n/a	n/a
0703	51.49	50.74
0701	51.42	50
0704	51.41	47.73
0705	51.43	50.31
0502	49.29	46.17
061B	n/a	n/a
151A	n/a	n/a


Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Manhole Reference	Manhole Cover Level	Manhole Invert Level
9004	n/a	54.76
9002	n/a	56.12
9003 941C	n/a n/a	55.95 n/a
7401	51	49.85
8403	52.29	50.94
8401	52.32	50.42
841D 8402	n/a 53.35	n/a 50.05
9401	53.86	51.91
9402	53.87	52.3
941D	n/a	n/a
9403 941A	54.44 n/a	53.24 n/a
941B	n/a	n/a
931L	n/a	54.22
931N	n/a	n/a
931C 931F	n/a n/a	55.55 54.36
931F 931H	n/a n/a	54.65
931K	n/a	54.39
931D	n/a	54.64
931J	n/a	54.89
931I 931E	n/a n/a	55.1 55.4
931T	n/a	n/a
931Q	n/a	n/a
931P	n/a 54.9	n/a
7301 8307	54.8 54.8	49.63 49.71
8302	53.71	51.41
8305	53.87	51.97
8304	54.3	52.1
8308 8303	53.8 54.2	50.02 51.78
8309	.01	n/a
831B	n/a	n/a
831D	n/a	54.17
841A 841B	n/a n/a	n/a n/a
831N	n/a	n/a
831M	n/a	54.26
831C	n/a	53.7
841C 831L	n/a n/a	n/a 54.4
831A	54.42	53.394
8310	54.26	52.5
831K	n/a	54.65
831E 831F	n/a n/a	54.72 53.84
931A	55.325	53.19
931B	n/a	n/a
931G	n/a	54.14
931M 931O	n/a n/a	53.8 n/a
8205	55.63	53.22
8204	55.7	54
8208	55.62 58.06	n/a 56.44
9201 8203	58.06 57.83	56.44 n/a
8202	55.71	54.07
9204	57.74	52.49
9209 9205	57.63 57.45	54.54 52.6
9203	57.45 57.18	52.45
9208	57.35	54.68
9202	57.06	52.45
8201 8200	56.84 55.53	54.34 n/a
8209 9308	55.5 <i>3</i> 57.19	n/a 52.65
9311	57.2	54.89
8306	56.13	54.23
9302	57.39 57.38	52.74 52.81
9303 8301	57.38 55.5	52.81 52.49
9310	57.26	55.02
831G	n/a	54.95
831I 831J	n/a n/a	55.1 54.89
831J 831H	n/a n/a	54.89 54.5
8108	55.59	54.12
8101	55.83	55.02
8109	55.95 56.25	53.96 54.86
8102 8107	56.25 55.7	54.86 54.34
8106	56.15	54.73
9217	56	53.59
9214 9108	56 56.63	54.3 53.64


Manhole Reference	Manhole Cover Level	Manhole Invert Level
9104	56.85	54.53
9103	60.27	n/a
9101	60.24	56.69
9106	59.7	58.35
9001	n/a	56.25
911A	n/a	n/a
911B	n/a	n/a
911C	n/a	n/a
9112	n/a	n/a
9109	n/a	n/a
9110	n/a	n/a
9102	59.89	57.89
9111	n/a	n/a
5101	46.74	44.25
5102	47.21	44.54
5106	47.1	46.38
5107	48.56	46.46
5105	48.38	46.83
5109	49.31	48.11
511B	n/a	n/a
5104	49.31	48.11
511A 5103	n/a 40.24	n/a 46 50
5103 6103	49.24 51.32	46.59 50.07
6103	51.32 51.24	50.07
511C	51.24 n/a	50.06 n/a
521A	n/a	n/a
5005	.01	n/a
6012	54.73	n/a
6011	51.47	49.23
6001	51.29	50.04
7003	57.01	56.01
6010	56.25	54.3
6002	.01	n/a
6006	53.84	51.34
6007	55.79	53.51
6004	55.8	53.98
6008	56	n/a
6009	56.37	55.12
5006	49.89	48.14
7005	56.5	55.73
7002	56.48	55.16
7001	56.29	55.44
6003	.01	n/a
6005	51.65 53.56	49.8 51.36
6104 6101	53.56 53.59	51.36 n/a
501A	53.59 n/a	n/a
501A 501B	n/a	n/a
5002	47.87	46.75
5001	48.02	46.12
5004	.01	n/a
5003	47.79	46.8
941D	n/a	n/a
941E	n/a	n/a
6401	n/a	n/a
7402	54.4	48.69
5201	48.26	46.01
5202	48.63	46.11
5207	48.62	46.56
5203	48.93	n/a
5206	48.96	47.51
5205	49.33	48.03
5204	49.48	47.18

Public Sewer Types (Operated & Maintained by Thames Water)

---- Foul: A sewer designed to convey waste water from domestic and

Trunk Foul

Bio-solids (Sludge)

----- Vacuum

Trunk Surface Water

P Vent Pipe

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

0

Vent Column **Operational Controls**

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

End Items

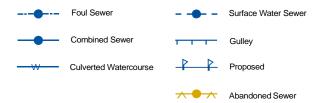
End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

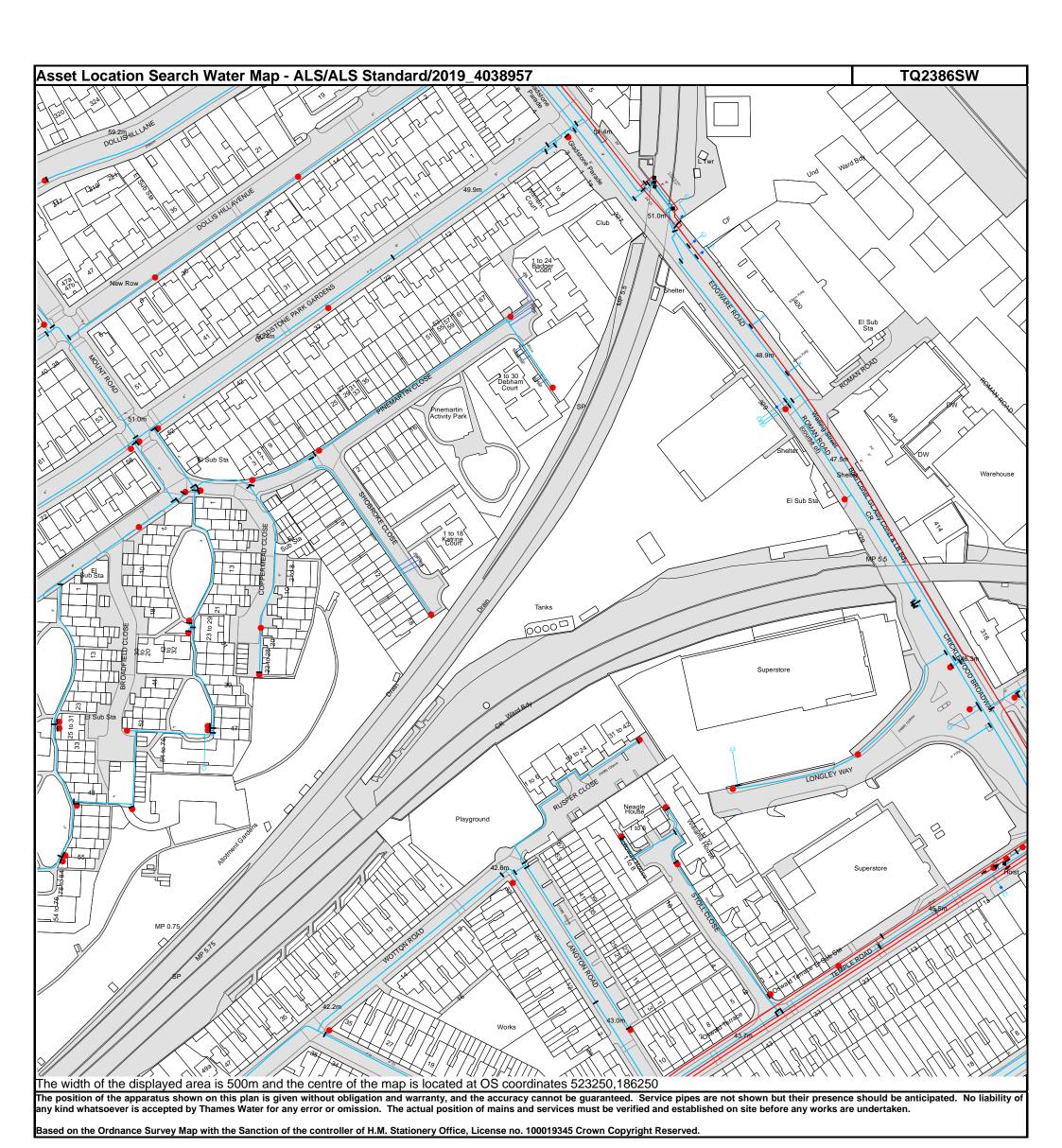
- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

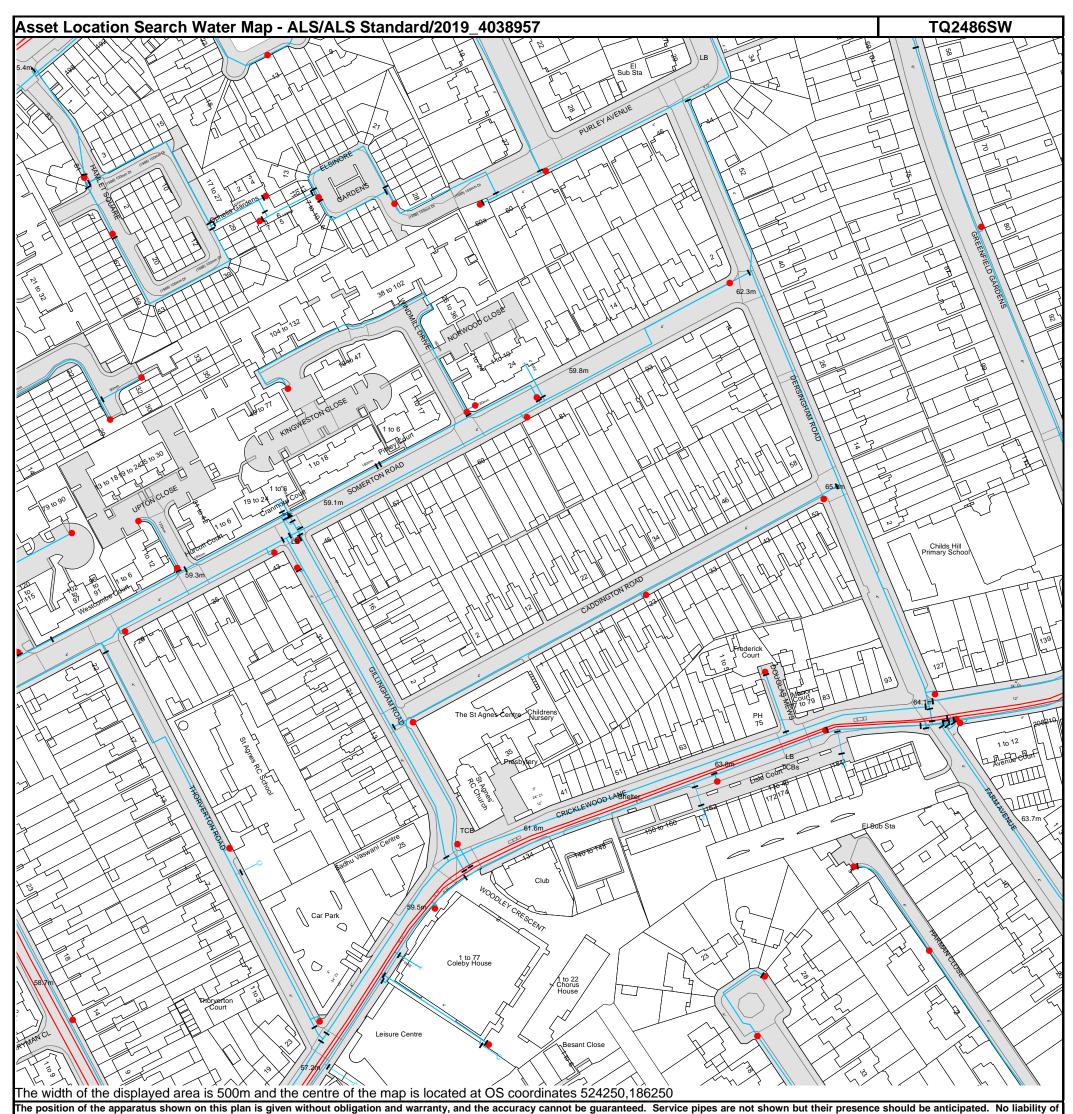
6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Other Symbols

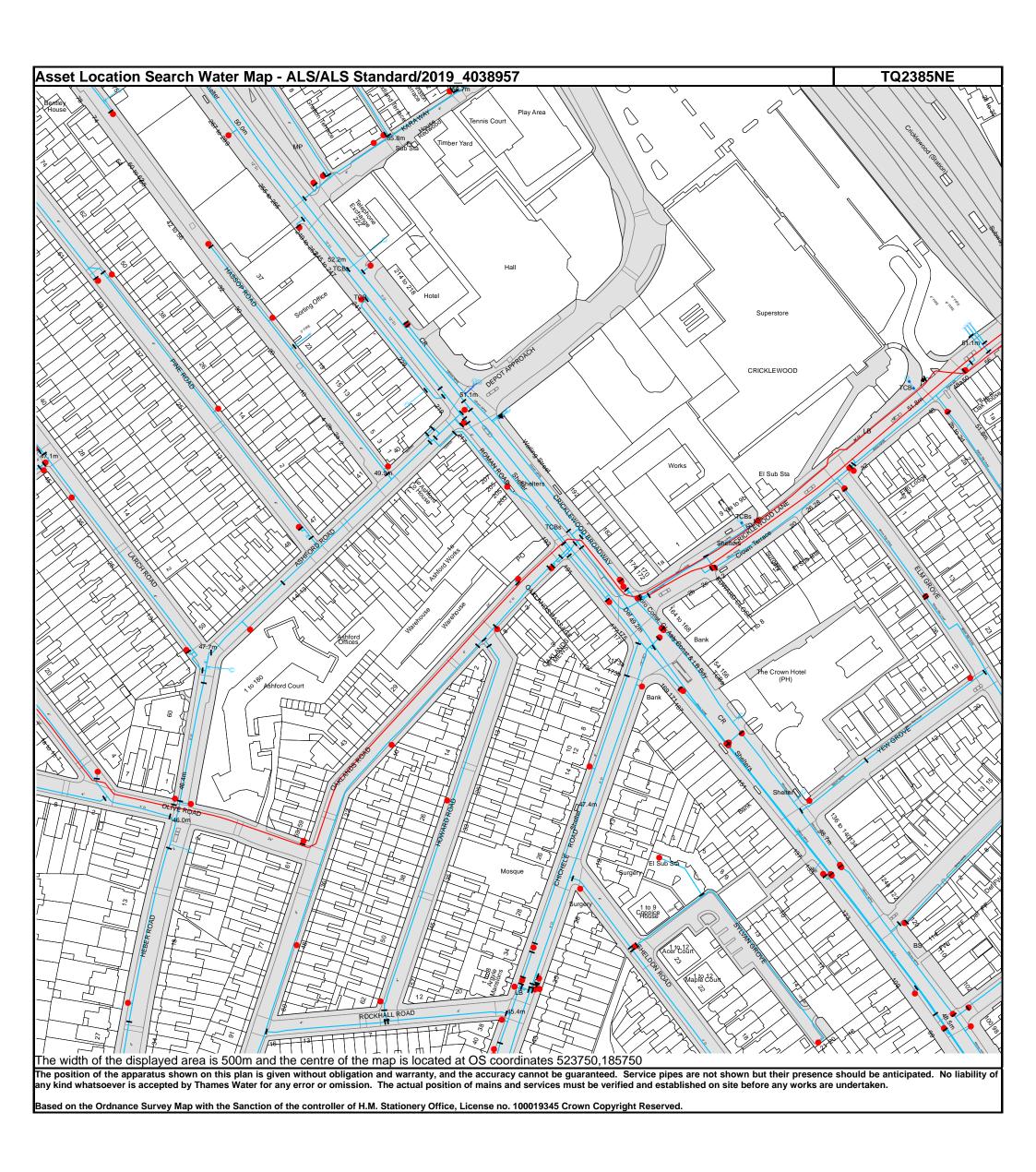
Symbols used on maps which do not fall under other general categories


Areas

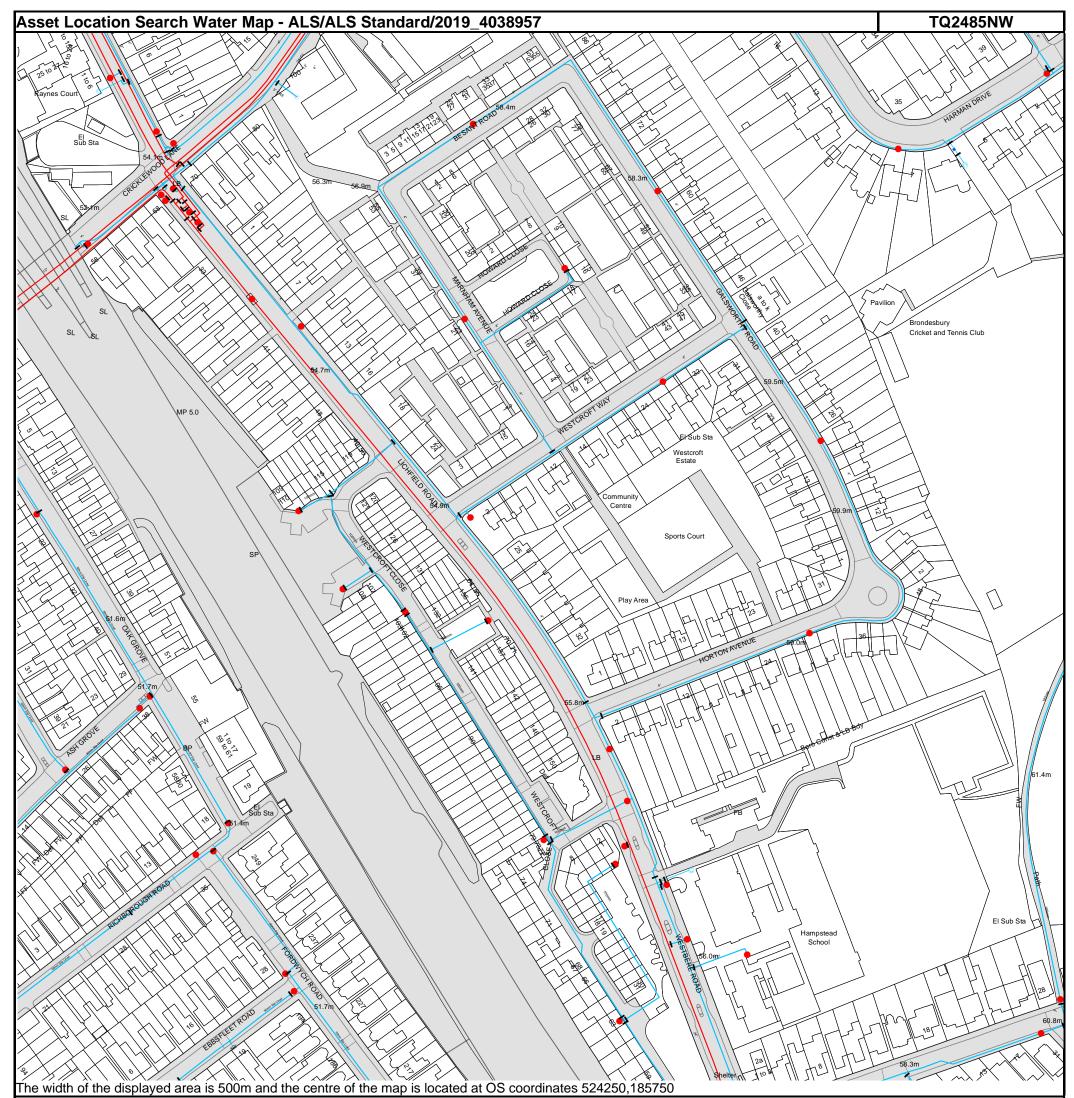

Lines denoting areas of underground surveys, etc.


Conduit Bridge

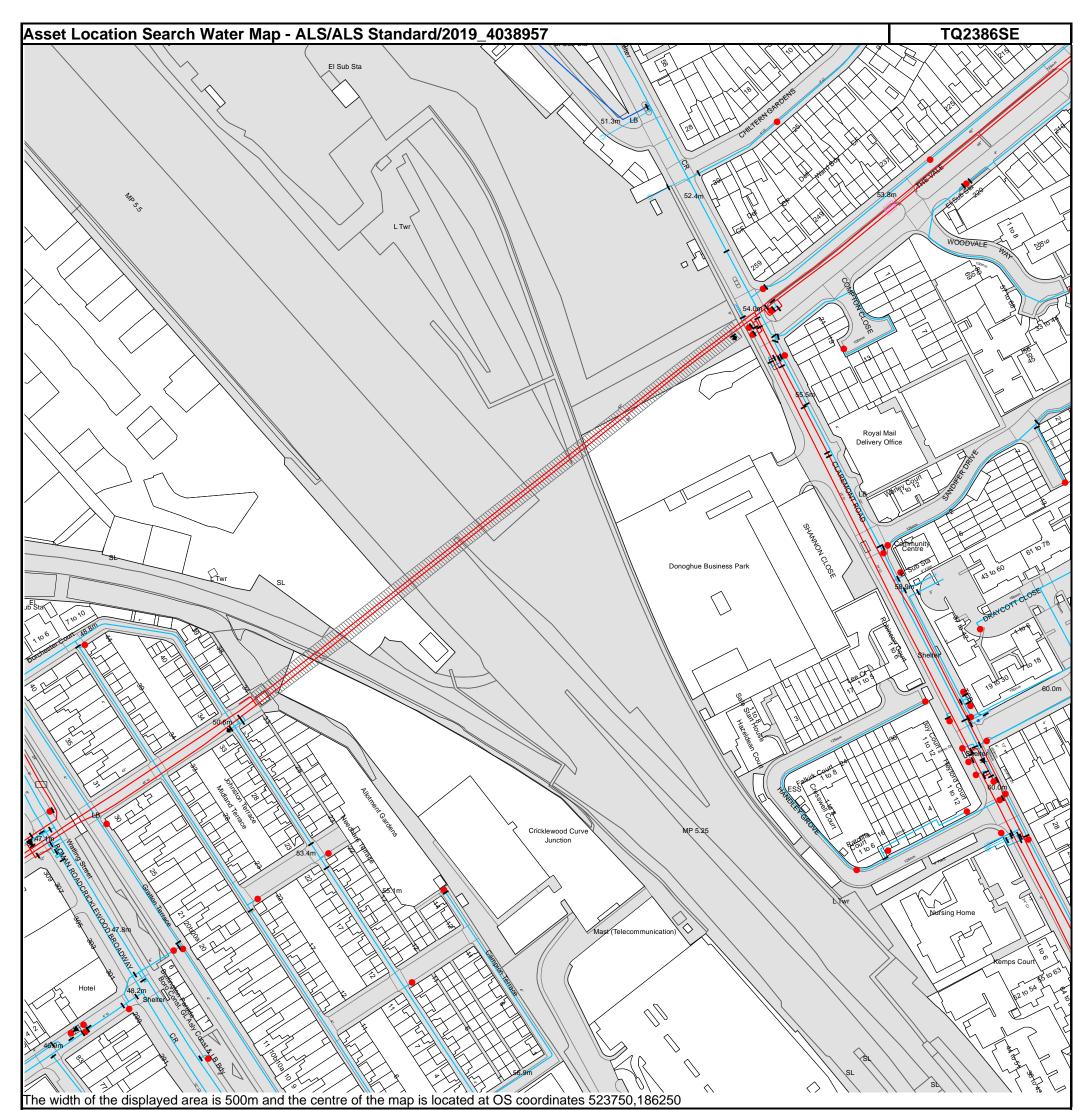
Other Sewer Types (Not Operated or Maintained by Thames Water)



<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk



any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.


Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Water Pipes (Operated & Maintained by Thames Water)

4"	Distribution Main: The most common pipe shown on water maps. With few exceptions, domestic connections are only made to distribution mains.
16"	Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
3" SUPPLY	Supply Main: A supply main indicates that the water main is used as a supply for a single property or group of properties.
3" FIRE	Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
3" METERED	Metered Pipe: A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
	Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
	Proposed Main: A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND	
Up to 300mm (12")	900mm (3')	
300mm - 600mm (12" - 24")	1100mm (3' 8")	
600mm and bigger (24" plus)	1200mm (4')	

Valves Operational Sites General PurposeValve **Booster Station** Air Valve Other Pressure ControlValve Other (Proposed) Customer Valve Pumping Station Service Reservoir **Hydrants** Shaft Inspection Single Hydrant Treatment Works Meters Unknown Meter Water Tower **End Items Other Symbols** Symbol indicating what happens at the end of ^L a water main. Data Logger Blank Flange Capped End Emptying Pit Undefined End Manifold **Customer Supply**

Fire Supply

Othe	er Water Pipes (Not Operated or Maintained by Thames Water)
	Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.
	Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0845 070 9148 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to 'Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Terms and Conditions

Search Code

IMPORTANT CONSUMER PROTECTION INFORMATION

This search has been produced by Thames Water Property Searches, Clearwater Court, Vastern Road, Reading RG1 8DB, which is registered with the Property Codes Compliance Board (PCCB) as a subscriber to the Search Code. The PCCB independently monitors how registered search firms maintain compliance with the Code.

The Search Code:

- provides protection for homebuyers, sellers, estate agents, conveyancers and mortgage lenders who
 rely on the information included in property search reports undertaken by subscribers on residential
 and commercial property within the United Kingdom
- · sets out minimum standards which firms compiling and selling search reports have to meet
- promotes the best practise and quality standards within the industry for the benefit of consumers and property professionals
- enables consumers and property professionals to have confidence in firms which subscribe to the code, their products and services.

By giving you this information, the search firm is confirming that they keep to the principles of the Code. This provides important protection for you.

The Code's core principles

Firms which subscribe to the Search Code will:

- display the Search Code logo prominently on their search reports
- act with integrity and carry out work with due skill, care and diligence
- at all times maintain adequate and appropriate insurance to protect consumers
- · conduct business in an honest, fair and professional manner
- handle complaints speedily and fairly
- ensure that products and services comply with industry registration rules and standards and relevant laws
- · monitor their compliance with the Code

Complaints

If you have a query or complaint about your search, you should raise it directly with the search firm, and if appropriate ask for any complaint to be considered under their formal internal complaints procedure. If you remain dissatisfied with the firm's final response, after your complaint has been formally considered, or if the firm has exceeded the response timescales, you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). The Ombudsman can award compensation of up to £5,000 to you if the Ombudsman finds that you have suffered actual loss and/or aggravation, distress or inconvenience as a result of your search provider failing to keep to the code.

Please note that all queries or complaints regarding your search should be directed to your search provider in the first instance, not to TPOs or to the PCCB.

TPOs Contact Details

The Property Ombudsman scheme Milford House 43-55 Milford Street Salisbury Wiltshire SP1 2BP Tel: 01722 333306

Fax: 01722 332296 Web site: www.tpos.co.uk Email: admin@tpos.co.uk

You can get more information about the PCCB from www.propertycodes.org.uk

PLEASE ASK YOUR SEARCH PROVIDER IF YOU WOULD LIKE A COPY OF THE SEARCH CODE

Appendix B Microdrainage Calculation

AECOM		Page 1
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Mirro
Date 30/07/2020 17:52	Designed by Bimarsha LImbu	Designado
File 200730 Roof podium	Checked by Nicholas Price	Dialilade
Innovyze	Source Control 2019.1	

Cascade Summary of Results for 200304 Source Control Biodiverse Roof.SRCX

Upstream Outflow To Overflow To Structures

(None) (None) 200304 Source Control Podium.SRCX

Half Drain Time : 878 minutes.

	Stori Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Stat	cus
15	min S	Summer	64.713	0.063	0.0	1.3		1.3	89.3	Flood	Risk
30	min S	Summer	64.724	0.074	0.0	1.7		1.7	117.5	Flood	Risk
60	min S	Summer	64.736	0.086	0.0	2.1		2.1	145.0	Flood	Risk
120	min S	Summer	64.754	0.104	0.0	2.7		2.7	186.6	Flood	Risk
180	min S	Summer	64.763	0.113	0.0	2.9		2.9	210.2	Flood	Risk
240	min S	Summer	64.770	0.120	0.0	3.0		3.0	224.5	Flood	Risk
360	min S	Summer	64.775	0.125	0.0	3.1		3.1	238.1	Flood	Risk
480	min S	Summer	64.777	0.127	0.0	3.1		3.1	241.1	Flood	Risk
600	min S	Summer	64.776	0.126	0.0	3.1		3.1	239.5	Flood	Risk
720	min S	Summer	64.775	0.125	0.0	3.1		3.1	237.0	Flood	Risk
960	min S	Summer	64.772	0.122	0.0	3.0		3.0	230.7	Flood	Risk
1440	min S	Summer	64.767	0.117	0.0	2.9		2.9	218.5	Flood	Risk
2160	min S	Summer	64.760	0.110	0.0	2.8		2.8	201.7	Flood	Risk
2880	min S	Summer	64.754	0.104	0.0	2.7		2.7	187.2	Flood	Risk
4320	min S	Summer	64.744	0.094	0.0	2.4		2.4	165.0	Flood	Risk
5760	min S	Summer	64.738	0.088	0.0	2.2		2.2	148.5	Flood	Risk
7200	min S	Summer	64.732	0.082	0.0	2.0		2.0	135.8	Flood	Risk

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	180.484	0.0	66.7	27
30	min	Summer	115.952	0.0	86.9	41
60	min	Summer	71.087	0.0	138.9	70
120	min	Summer	46.045	0.0	182.2	128
180	min	Summer	35.116	0.0	208.9	188
240	min	Summer	28.652	0.0	227.0	246
360	min	Summer	21.086	0.0	249.4	364
480	min	Summer	16.714	0.0	261.7	480
600	min	Summer	13.856	0.0	269.0	556
720	min	Summer	11.842	0.0	273.4	608
960	min	Summer	9.178	0.0	276.9	724
1440	min	Summer	6.371	0.0	275.0	986
2160	min	Summer	4.415	0.0	334.0	1388
2880	min	Summer	3.408	0.0	338.3	1792
4320	min	Summer	2.374	0.0	336.8	2596
5760	min	Summer	1.846	0.0	361.5	3352
7200	min	Summer	1.528	0.0	367.7	4112

©1982-2019 Innovyze

AECOM		Page 2
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Mirro
Date 30/07/2020 17:52	Designed by Bimarsha LImbu	Drainage
File 200730 Roof podium	Checked by Nicholas Price	Dialilage
Innovyze	Source Control 2019.1	

$\underline{\text{Cascade Summary of Results for 200304 Source Control Biodiverse Roof.SRCX}}$

	Storm Event	_	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640	min S	Summer	64.728	0.078	0.0	1.8	1.8	125.8	Flood Risk
10080	min S	Summer	64.725	0.075	0.0	1.7	1.7	117.7	Flood Risk
15	min V	Winter	64.718	0.068	0.0	1.5	1.5	101.5	Flood Risk
30	min V	Winter	64.731	0.081	0.0	1.9	1.9	133.1	Flood Risk
60	min V	Winter	64.744	0.094	0.0	2.4	2.4	163.9	Flood Risk
120	min V	Winter	64.764	0.114	0.0	2.9	2.9	211.0	Flood Risk
180	min V	Winter	64.775	0.125	0.0	3.1	3.1	238.0	Flood Risk
240	min V	Winter	64.782	0.132	0.0	3.2	3.2	254.5	Flood Risk
360	min V	Winter	64.789	0.139	0.0	3.3	3.3	270.7	Flood Risk
480	min V	Winter	64.791	0.141	0.0	3.3	3.3	275.1	Flood Risk
600	min V	Winter	64.790	0.140	0.0	3.3	3.3	273.9	Flood Risk
720	min V	Winter	64.789	0.139	0.0	3.3	3.3	270.1	Flood Risk
960	min V	Winter	64.785	0.135	0.0	3.2	3.2	261.0	Flood Risk
1440	min V	Winter	64.778	0.128	0.0	3.1	3.1	244.1	Flood Risk
2160	min V	Winter	64.768	0.118	0.0	2.9	2.9	220.0	Flood Risk
2880	min V	Winter	64.759	0.109	0.0	2.8	2.8	199.4	Flood Risk
4320	min V	Winter	64.746	0.096	0.0	2.5	2.5	168.8	Flood Risk
5760	min V	Winter	64.737	0.087	0.0	2.2	2.2	147.6	Flood Risk
7200	min V	Winter	64.731	0.081	0.0	1.9	1.9	131.8	Flood Risk
8640	min V	Winter	64.725	0.075	0.0	1.7	1.7	119.5	Flood Risk
10080	min V	Winter	64.721	0.071	0.0	1.6	1.6	109.7	Flood Risk

	Stor Even			Volume	Discharge Volume (m³)		
8640	min	Summer	1.315	0.0	373.1	4920	
10080	min	Summer	1.162	0.0	376.7	5648	
15	min	Winter	180.484	0.0	75.4	26	
30	min	Winter	115.952	0.0	97.7	41	
60	min	Winter	71.087	0.0	156.8	70	
120	min	Winter	46.045	0.0	205.1	126	
180	min	Winter	35.116	0.0	234.8	184	
240	min	Winter	28.652	0.0	255.0	242	
360	min	Winter	21.086	0.0	279.8	356	
480	min	Winter	16.714	0.0	293.3	468	
600	min	Winter	13.856	0.0	301.2	576	
720	min	Winter	11.842	0.0	305.9	676	
960	min	Winter	9.178	0.0	309.6	760	
1440	min	Winter	6.371	0.0	307.8	1060	
2160	min	Winter	4.415	0.0	376.7	1500	
2880	min	Winter	3.408	0.0	381.9	1932	
4320	min	Winter	2.374	0.0	381.0	2728	
5760	min	Winter	1.846	0.0	410.2	3520	
7200	min	Winter	1.528	0.0	418.3	4320	
8640	min	Winter	1.315	0.0	425.3	5104	
10080	min		1.162		430.4	5856	

©1982-2019 Innovyze

AECOM		Page 3
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Mirro
Date 30/07/2020 17:52	Designed by Bimarsha LImbu	Desinado
File 200730 Roof podium	Checked by Nicholas Price	Dialilade
Innovyze	Source Control 2019.1	'

$\underline{\text{Cascade Rainfall Details for 200304 Source Control Biodiverse Roof.SRCX}}$

Rainfall Model	FEH	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
FEH Rainfall Version	2013	Cv (Winter)	0.840
Site Location	GB 523899 185918	Shortest Storm (mins)	15
Data Type	Point	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

Time Area Diagram

Total Area (ha) 0.304

	(mins)							
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.101	4	8	0.101	8	12	0.101

AECOM		Page 4
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Micco
Date 30/07/2020 17:52	Designed by Bimarsha LImbu	Desinado
File 200730 Roof podium	Checked by Nicholas Price	Dialilade
Innovyze	Source Control 2019.1	

Cascade Model Details for 200304 Source Control Biodiverse Roof.SRCX

Storage is Online Cover Level (m) 65.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	50.0
Membrane Percolation (mm/hr)	1000	Length (m)	50.0
Max Percolation (1/s)	694.4	Slope (1:X)	1000.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.95	Evaporation (mm/day)	3
Invert Level (m)	64.650	Cap Volume Depth (m)	0.150

Orifice Outflow Control

Diameter (m) 0.070 Discharge Coefficient 0.600 Invert Level (m) 64.650

AECOM		Page 1
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Micro
Date 30/07/2020 17:49	Designed by Bimarsha Limbu	Desipado
File 200730 Roof podium	Checked by Nicholas Price	Dialilade
Innovyze	Source Control 2019.1	

Cascade Summary of Results for 200304 Source Control Podium.SRCX

Upstream Outflow To Overflow To Structures

200304 Source Control Biodiverse Roof.SRCX (None) 200730 Source Control Below Ground Attenuation.SRCX

Half Drain Time : 65 minutes.

	Stori		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control Σ	Max Outflow (1/s)	Max Volume (m³)	Status
15	min s	Summer	59.645	0.095	0.0	14.5	14.5	89.7	ОК
30	min :	Summer	59.662	0.112	0.0	18.8	18.8	110.3	ОК
60	min :	Summer	59.673	0.123	0.0	21.4	21.4	122.4	O K
120	min s	Summer	59.686	0.136	0.0	26.2	26.2	137.6	O K
180	min s	Summer	59.689	0.139	0.0	27.6	27.6	141.4	O K
240	min s	Summer	59.688	0.138	0.0	27.2	27.2	140.7	O K
360	min S	Summer	59.683	0.133	0.0	24.9	24.9	134.2	O K
480	min S	Summer	59.676	0.126	0.0	22.1	22.1	125.8	O K
600	min S	Summer	59.668	0.118	0.0	20.3	20.3	117.2	O K
720	min S	Summer	59.662	0.112	0.0	18.7	18.7	109.6	O K
960	min S	Summer	59.651	0.101	0.0	16.0	16.0	97.1	O K
1440	min :	Summer	59.637	0.087	0.0	12.5	12.5	80.3	O K
2160	min :	Summer	59.624	0.074	0.0	9.4	9.4	65.8	O K
2880	min :	Summer	59.617	0.067	0.0	7.6	7.6	57.3	O K
4320	min :	Summer	59.608	0.058	0.0	5.5	5.5	47.5	O K
5760	min :	Summer	59.603	0.053	0.0	4.3	4.3	41.8	O K
7200	min :	Summer	59.600	0.050	0.0	3.5	3.5	37.3	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	180.484	0.0	98.7	23
30	min	Summer	115.952	0.0	128.6	34
60	min	Summer	71.087	0.0	159.0	54
120	min	Summer	46.045	0.0	207.7	86
180	min	Summer	35.116	0.0	238.3	120
240	min	Summer	28.652	0.0	259.7	152
360	min	Summer	21.086	0.0	287.1	218
480	min	Summer	16.714	0.0	303.5	282
600	min	Summer	13.856	0.0	314.5	346
720	min	Summer	11.842	0.0	322.4	408
960	min	Summer	9.178	0.0	332.8	530
1440	min	Summer	6.371	0.0	345.7	772
2160	min	Summer	4.415	0.0	357.9	1132
2880	min	Summer	3.408	0.0	366.8	1504
4320	min	Summer	2.374	0.0	380.2	2216
5760	min	Summer	1.846	0.0	391.2	2952
7200	min	Summer	1.528	0.0	401.7	3744

©1982-2019 Innovyze

AECOM		Page 2
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Micco
Date 30/07/2020 17:49	Designed by Bimarsha Limbu	Desinado
File 200730 Roof podium	Checked by Nicholas Price	Diamage
Innovyze	Source Control 2019.1	

Cascade Summary of Results for 200304 Source Control Podium.SRCX

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
8640	min Sum	mer	59.595	0.045	0.0	3.0		3.0	32.5	ОК
10080	min Sum	mer	59.592	0.042	0.0	2.7		2.7	29.1	ОК
15	min Win	iter	59.654	0.104	0.0	16.8		16.8	100.8	ОК
30	min Win	iter	59.674	0.124	0.0	21.6		21.6	123.9	ОК
60	min Win	iter	59.685	0.135	0.0	25.8		25.8	136.6	ОК
120	min Win	iter	59.696	0.146	0.0	30.3		30.3	149.5	ОК
180	min Win	iter	59.696	0.146	0.0	30.5		30.5	149.9	ОК
240	min Win	iter	59.693	0.143	0.0	29.2		29.2	146.1	ОК
360	min Win	iter	59.684	0.134	0.0	25.3		25.3	135.2	ОК
480	min Win	iter	59.674	0.124	0.0	21.6		21.6	123.8	ОК
600	min Win	iter	59.664	0.114	0.0	19.3		19.3	112.8	ОК
720	min Win	iter	59.657	0.107	0.0	17.4		17.4	103.6	ОК
960	min Win	iter	59.644	0.094	0.0	14.4		14.4	89.4	ОК
1440	min Win	iter	59.629	0.079	0.0	10.7		10.7	71.7	ОК
2160	min Win	iter	59.617	0.067	0.0	7.7		7.7	57.6	O K
2880	min Win	iter	59.610	0.060	0.0	6.0		6.0	49.8	O K
4320	min Win	iter	59.603	0.053	0.0	4.3		4.3	41.3	O K
5760	min Win	iter	59.597	0.047	0.0	3.2		3.2	34.7	O K
7200	min Win	iter	59.592	0.042	0.0	2.7		2.7	28.6	O K
8640	min Win	iter	59.589	0.039	0.0	2.3		2.3	24.5	O K
10080	min Win	iter	59.586	0.036	0.0	2.1		2.1	21.5	O K

Storm Event			Discharge Volume (m³)		
8640 min Summe	er 1.315	0.0	411.9	4424	
10080 min Summe	r 1.162	0.0	422.0	5152	
15 min Winte	er 180.484	0.0	111.3	23	
30 min Winte	r 115.952	0.0	144.7	34	
60 min Winte	r 71.087	0.0	178.8	56	
120 min Winte	er 46.045	0.0	233.3	90	
180 min Winte	er 35.116	0.0	267.7	126	
240 min Winte	er 28.652	0.0	291.7	160	
360 min Winte	er 21.086	0.0	322.4	228	
480 min Winte	r 16.714	0.0	340.8	296	
600 min Winte	r 13.856	0.0	353.1	360	
720 min Winte	r 11.842	0.0	362.0	422	
960 min Winte	er 9.178	0.0	373.8	548	
1440 min Winte	er 6.371	0.0	388.3	788	
2160 min Winte	er 4.415	0.0	402.3	1148	
2880 min Winte	er 3.408	0.0	412.5	1524	
4320 min Winte	er 2.374	0.0	427.9	2216	
5760 min Winte	er 1.846	0.0	440.6	3056	
7200 min Winte	er 1.528	0.0	452.9	3752	
8640 min Winte	er 1.315	0.0	464.9	4424	
10080 min Winte	er 1.162	0.0	476.7	5232	
(©1982-20	19 Inno	vyze		

AECOM		Page 3
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Micro
Date 30/07/2020 17:49	Designed by Bimarsha Limbu	Desipado
File 200730 Roof podium	Checked by Nicholas Price	Dialilade
Innovyze	Source Control 2019.1	

Cascade Rainfall Details for 200304 Source Control Podium.SRCX

Rainfall Model	FEH	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.750
FEH Rainfall Version	2013	Cv (Winter)	0.840
Site Location	GB 523899 185918	Shortest Storm (mins)	15
Data Type	Point	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

Time Area Diagram

Total Area (ha) 0.310

	(mins)							
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.103	4	8	0.103	8	12	0.103

AECOM		Page 4
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Micco
Date 30/07/2020 17:49	Designed by Bimarsha Limbu	Desinado
File 200730 Roof podium	Checked by Nicholas Price	Dialilade
Innovyze	Source Control 2019.1	

Cascade Model Details for 200304 Source Control Podium.SRCX

Storage is Online Cover Level (m) 60.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	35.0
Membrane Percolation (mm/hr)	1000	Length (m)	35.0
Max Percolation (1/s)	340.3	Slope (1:X)	1000.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.95	Evaporation (mm/day)	3
Invert Level (m)	59.550	Cap Volume Depth (m)	0.150

Orifice Outflow Control

Diameter (m) 0.836 Discharge Coefficient 0.600 Invert Level (m) 59.550

AECOM		Page 1
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Mirro
Date 30/07/2020 17:51	Designed by Bimarsha Limbu	Designation
File 200730 Roof podium	Checked by Nicholas Price	Dialilage
Innovyze	Source Control 2019.1	

$\frac{\texttt{Cascade Summary of Results for 200730 Source Control Below Ground}}{\texttt{Attenuation.SRCX}}$

Upstream Structures

Outflow To Overflow To

200304 Source Control Podium.SRCX (1

(None) (None)

200304 Source Control Biodiverse Roof.SRCX

Half Drain Time : 255 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event	t	Level	Depth	Infiltration	Control	$\boldsymbol{\Sigma}$ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
15	min S	Summer	52.545	0.745	0.0	52.0	52.0	683.1	ОК
30	min S	Summer	52.742	0.942	0.0	52.0	52.0	863.6	ОК
60	min S	Summer	52.910	1.110	0.0	52.0	52.0	1017.4	ОК
120	min S	Summer	53.153	1.353	0.0	52.0	52.0	1240.1	O K
180	min S	Summer	53.251	1.451	0.0	52.0	52.0	1330.3	O K
240	min S	Summer	53.276	1.476	0.0	52.0	52.0	1353.2	O K
360	min S	Summer	53.251	1.451	0.0	52.0	52.0	1330.2	O K
480	min S	Summer	53.185	1.385	0.0	52.0	52.0	1270.1	O K
600	min S	Summer	53.098	1.298	0.0	52.0	52.0	1190.3	O K
720	min S	Summer	53.007	1.207	0.0	52.0	52.0	1106.3	O K
960	min S	Summer	52.836	1.036	0.0	52.0	52.0	949.5	O K
1440	min S	Summer	52.558	0.758	0.0	52.0	52.0	694.6	O K
2160	min S	Summer	52.286	0.486	0.0	51.6	51.6	445.8	O K
2880	min S	Summer	52.142	0.342	0.0	49.2	49.2	313.9	ОК
4320	min S	Summer	52.047	0.247	0.0	39.7	39.7	226.6	ОК
5760	min S	Summer	52.010	0.210	0.0	31.7	31.7	192.2	ОК

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	180.484	0.0	722.0	25
30	min	Summer	115.952	0.0	930.2	39
60	min	Summer	71.087	0.0	1149.4	66
120	min	Summer	46.045	0.0	1490.3	124
180	min	Summer	35.116	0.0	1705.4	182
240	min	Summer	28.652	0.0	1855.6	232
360	min	Summer	21.086	0.0	2048.8	290
480	min	Summer	16.714	0.0	2165.4	354
600	min	Summer	13.856	0.0	2244.1	418
720	min	Summer	11.842	0.0	2301.4	480
960	min	Summer	9.178	0.0	2378.1	608
1440	min	Summer	6.371	0.0	2474.9	856
2160	min	Summer	4.415	0.0	2578.5	1196
2880	min	Summer	3.408	0.0	2652.7	1528
4320	min	Summer	2.374	0.0	2768.2	2212
5760	min	Summer	1.846	0.0	2876.6	2944

©1982-2019 Innovyze

AECOM	Page 2	
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Micco
Date 30/07/2020 17:51	Designed by Bimarsha Limbu	Desinado
File 200730 Roof podium	Checked by Nicholas Price	Dialilade
Innovyze	Source Control 2019.1	

$\frac{\texttt{Cascade Summary of Results for 200730 Source Control Below Ground}}{\texttt{Attenuation.SRCX}}$

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
	(m)	(m)	(l/s)	(1/s)	(l/s)	(m³)	
7200 min Summer	51.987	0.187	0.0	26.5	26.5	171.3	O K
8640 min Summer	51.971	0.171	0.0	23.0	23.0	156.7	O K
10080 min Summer	51.959	0.159	0.0	20.4	20.4	145.8	O K
15 min Winter	52.640	0.840	0.0	52.0	52.0	770.1	O K
30 min Winter	52.864	1.064	0.0	52.0	52.0	975.6	O K
60 min Winter	53.060	1.260	0.0	52.0	52.0	1155.4	O K
120 min Winter	53.342	1.542	0.0	52.0	52.0	1413.5	O K
180 min Winter	53.459	1.659	0.0	52.0	52.0	1520.6	ОК
240 min Winter	53.497	1.697	0.0	52.0	52.0	1555.3	ОК
360 min Winter	53.457	1.657	0.0	52.0	52.0	1519.5	ОК
480 min Winter	53.378	1.578	0.0	52.0	52.0	1446.7	ОК
600 min Winter	53.275	1.475	0.0	52.0	52.0	1352.5	ОК
720 min Winter	53.157	1.357	0.0	52.0	52.0	1244.0	ОК
960 min Winter	52.893	1.093	0.0	52.0	52.0	1001.6	ОК
1440 min Winter	52.489	0.689	0.0	52.0	52.0	632.0	ОК
2160 min Winter	52.158	0.358	0.0	49.6	49.6	328.4	ОК
2880 min Winter	52.061	0.261	0.0	42.3	42.3	239.5	ОК
4320 min Winter			0.0	30.0	30.0	185.2	ОК
5760 min Winter			0.0	23.4	23.4	158.6	ОК
7200 min Winter			0.0	19.5	19.5	141.8	ОК

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
7200	min	Summer	1.528	0.0	2975.1	3672
8640	min	Summer	1.315	0.0	3070.7	4408
10080	min	Summer	1.162	0.0	3163.6	5136
15	min	Winter	180.484	0.0	809.7	25
30	min	Winter	115.952	0.0	1042.9	39
60	min	Winter	71.087	0.0	1287.8	66
120	min	Winter	46.045	0.0	1669.6	122
180	min	Winter	35.116	0.0	1910.6	180
240	min	Winter	28.652	0.0	2078.8	234
360	min	Winter	21.086	0.0	2295.2	310
480	min	Winter	16.714	0.0	2425.9	376
600	min	Winter	13.856	0.0	2513.9	454
720	min	Winter	11.842	0.0	2578.1	532
960	min	Winter	9.178	0.0	2664.1	662
1440	min	Winter	6.371	0.0	2773.0	900
2160	min	Winter	4.415	0.0	2888.4	1212
2880	min	Winter	3.408	0.0	2971.7	1508
4320	min	Winter	2.374	0.0	3101.6	2212
5760	min	Winter	1.846	0.0	3222.0	2944
7200	min	Winter	1.528	0.0	3332.6	3672

©1982-2019 Innovyze

AECOM					
Midpoint	B&Q Cricklewood				
Alencon Link					
Basingstoke, RG21 7PP		Mirro			
Date 30/07/2020 17:51	Designed by Bimarsha Limbu	Desipado			
File 200730 Roof podium	Checked by Nicholas Price	Dialilage			
Innovyze	Source Control 2019.1				

$\frac{\text{Cascade Summary of Results for 200730 Source Control Below Ground}}{\text{Attenuation.SRCX}}$

Storm		ı	Max Max		Max Max Max		Max Max		Status
	Event	:		-	Infiltration (1/s)				
8640	min V	Winter	51.942	0.142	0.0	16.7	16.7	130.1	ОК
10080	min V	Winter	51.932	0.132	0.0	14.8	14.8	121.4	ОК

Storm Event		Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
8640 min Winter	1.315	0.0	3439.8	4408
10080 min Winter	1.162	0.0	3544.7	5144

AECOM		Page 4
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Micco
Date 30/07/2020 17:51	Designed by Bimarsha Limbu	Desinado
File 200730 Roof podium	Checked by Nicholas Price	Dialilade
Innovyze	Source Control 2019.1	

$\frac{\texttt{Cascade Rainfall Details for 200730 Source Control Below Ground}}{\texttt{Attenuation.SRCX}}$

Yes	Winter Storms	FEH	Rainfall Model
0.750	Cv (Summer)	100	Return Period (years)
0.840	Cv (Winter)	2013	FEH Rainfall Version
15	Shortest Storm (mins)	3 523899 185918	Site Location
10080	Longest Storm (mins)	Point	Data Type
+40	Climate Change %	Yes	Summer Storms

Time Area Diagram

Total Area (ha) 2.166

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.722	4	8	0.722	8	12	0.722

AECOM	Page 5	
Midpoint	B&Q Cricklewood	
Alencon Link		
Basingstoke, RG21 7PP		Mirro
Date 30/07/2020 17:51	Designed by Bimarsha Limbu	Designado
File 200730 Roof podium	Checked by Nicholas Price	Diamade
Innovyze	Source Control 2019.1	

$\frac{\texttt{Cascade Model Details for 200730 Source Control Below Ground}}{\texttt{Attenuation.SRCX}}$

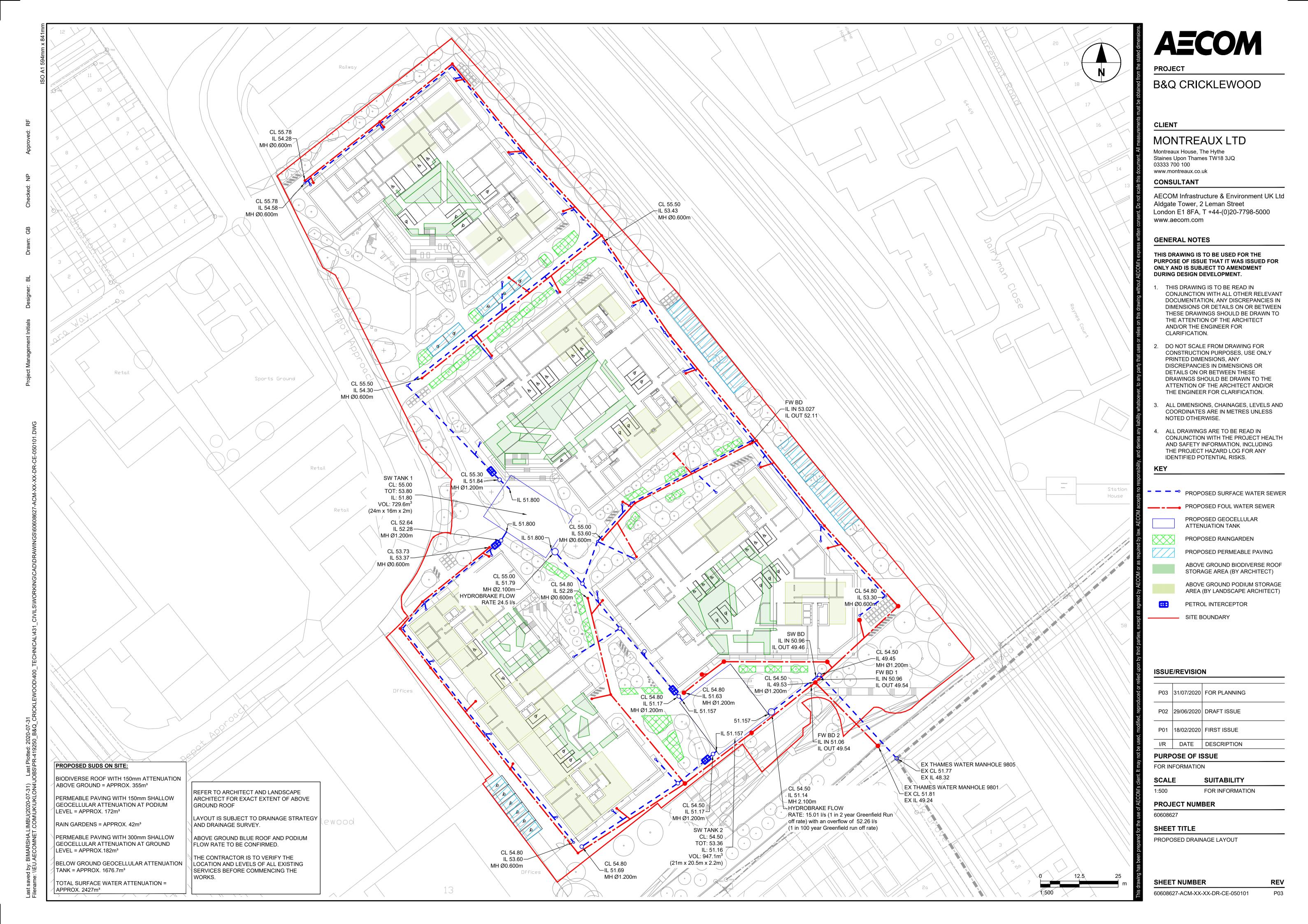
Storage is Online Cover Level (m) 55.000

Cellular Storage Structure

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 965.0 0.0 2.001 0.0 0.0 2.000 965.0 0.0

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0287-5220-2000-5220 Design Head (m) 2,000 Design Flow (1/s) 52.2 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 287 51.800 Invert Level (m) Minimum Outlet Pipe Diameter (mm) 300 Suggested Manhole Diameter (mm) 2100


Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	2.000	52.1	Kick-Flo®	1.338	42.9
	Flush-Flo™	0.615	52.0	Mean Flow over Head Range	-	44.8

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)						
0.100	8.9	1.200	47.2	3.000	63.3	7.000	95.6
0.200	29.5	1.400	43.9	3.500	68.2	7.500	98.8
0.300	47.9	1.600	46.8	4.000	72.8	8.000	102.0
0.400	50.4	1.800	49.5	4.500	77.1	8.500	105.1
0.500	51.7	2.000	52.1	5.000	81.1	9.000	108.0
0.600	52.0	2.200	54.5	5.500	85.0	9.500	110.9
0.800	51.5	2.400	56.9	6.000	88.7		
1.000	50.1	2.600	59.1	6.500	92.2		

©1982-2019 Innovyze

Appendix C Proposed Drainage Layout

Appendix D LBB SuDS Proforma

BARNET

${\sf GREATER} \textbf{LONDON} {\sf AUTHORITY}$

1. Project & Site Details	Project / Site Name (including sub- catchment / stage / phase where appropriate)	B&Q Cricklewood	
	Address & post code	Broadland Retail Park, Cricklewood Lane, London, NW2 1ES	
	OS Grid ref. (Easting, Northing)	E 523857	
		N 185892	
	LPA reference (if applicable)	N/A	
	Brief description of proposed work	Demoliton of existing buildings and comprehensive redevelopment of the site for mix of uses including residential and flexible commercial and community floorspace	
	Total site Area	27800 m ²	
	Total existing impervious area	approx. 26900 m²	
	Total proposed impervious area	approx. 23800 m ²	
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No	
	Existing drainage connection type and location	Connection assumed to nearby Thames Water surface and foul water sewer	
	Designer Name	Bimarsha Limbu	
	Designer Position	Engineer	
	Designer Company	AECOM	

	2a. Infiltration Feasibility					
2. Proposed Discharge Arrangements	Superficial geology classification	Awaiting Ground Investigation				
	Bedrock geology classification	London Clay based on BGS Information				
	Site infiltration rate	N/A m/s				
	Depth to groundwater level	0.6 - 4.9 (Perched) m below ground level				
	Is infiltration feasible?	No				
	2b. Drainage Hierarchy					
			Feasible (Y/N)	Proposed (Y/N)		
	1 store rainwater for later use		Υ	Υ		
	2 use infiltration techniques, such as porous surfaces in non-clay areas		N	N		
	3 attenuate rainwater in ponds or open water features for gradual release		N	N		
	4 attenuate rainwater by storing in tanks or sealed water features for gradual release		Υ	Υ		
	5 discharge rainwater direct to a watercourse		N	N		
	6 discharge rainwater to a surface water sewer/drain		Υ	Υ		
	7 discharge rainwater to the combined sewer.		N	N		
	2c. Proposed Discharge Details					
	Proposed discharge location	Refer to Proposed Drainage Layout				
	Has the owner/regulator of the discharge location been consulted?	Refer to the Drainage Strategy				

BARNET

${\sf GREATER} \textbf{LONDON} {\sf AUTHORITY}$

	On Plantage Patra & Page land Change						
	3a. Discharge Rates & Required Storage						
3. Drainage Strategy		Greenfield (GF) runoff rate (I/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³)	Proposed discharge rate (I/s)		
	Qbar	арргох. 15.01					
	1 in 1						
	1 in 30	36.7	1091.9				
	1 in 100	52.26	1091.9				
	1 in 100 + CC		><	approx. 2100	52.26		
	Climate change allowance used		40%				
	3b. Principal Method of Flow Control		Hydrobrake flow control				
	3c. Proposed SuDS Measures						
			Catchment area (m²)	Plan area (m²)	Storage vol. (m ³)		
	Rainwater harvesting		0		0		
	Infiltration systems		0		0		
	Green roofs		0	2554	397		
	Blue roofs		0	0	0		
	Filter strips		0	0	0		
	Filter drains		0	0	0		
	Bioretention / tree pits		0	0	0		
	Pervious pavements		0	670	354		
	Swales		0	0	0		
	Basins/ponds		0	0	0		
	Attenuation tanks		0	2004	1676.7		
	Total		0	3224	2427.7		

	4a. Discharge & Drainage Strategy	Page/section of drainage report	
4. Supporting Information	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	Section 5.1 of Drainage Strategy	
	Drainage hierarchy (2b)	Section 5.1 of Drainage Strategy	
	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	Section 5.4 of Drainage Strategy and Proposed Drainage Layout	
	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	Section 5.2-5.4 of Drainage Strategy	
	Proposed SuDS measures & specifications (3b)	Section 5.1 of Drainage Strategy	
	4b. Other Supporting Details	Page/section of drainage report	
	Detailed Development Layout	Appendix F of Drainage Strategy	
	Detailed drainage design drawings, including exceedance flow routes	Appendix C of Drainage Strategy	
	Detailed landscaping plans	Appendix F of Drainage Strategy	
	Maintenance strategy	Section 7 of Drainage Strategy	
	Demonstration of how the proposed SuDS measures improve:		
	a) water quality of the runoff?	Section 5.1 of Drainage Strategy	
	b) biodiversity?	Section 5.1 of Drainage Strategy	
	c) amenity?	Section 5.1 of Drainage Strategy	

Appendix E TWUL Correspondences

Miss Limbu AECOM Aldgate Tower 2 Leman Street London E1 8FA

2 March 2020

Pre-planning enquiry: Capacity concerns

Dear Bimarsha,

Thank you for providing information on your development at B&Q Cricklewood Lane. We have assessed the impact that the following proposals will have on our network:

- a) 1100 flats.
- b) 9036m² Commercial Premises.
- c) 20623m² of Car Parking.

To replace 7650m² shopping centre.

Foul Water

We've assessed your **foul water** proposals and concluded that we're unable to meet the needs of your **full** development at this time.

In order to ensure we make the appropriate upgrades – or 'off-site reinforcement' – to serve the remainder of your development, we'll need to carry out modelling work, design a solution and build the necessary improvements. This work is done at our cost.

Once we've begun modelling, we may need to contact you to discuss changing the connection point for capacity reasons. Please note that we'll pay the cost of covering any extra distance if the connection needs to be made at a point further away than the nearest practicable point of at least the same diameter.

How long could modelling and reinforcement take?

Typical timescales for a development of your size are:

Modelling: 8 months
Design: 6 months
Construction: 6 months

Total: 20 months

If the time you're likely to take from planning and construction through to first occupancy is longer than this, we'll be able to carry out the necessary upgrades in time for your development. If it's shorter, please contact me on the number below to discuss the timing of our activities.

What do you need to tell us before we start modelling?

We're responsible for funding any modelling and reinforcement work. We need, though, to spend our customers' money wisely, so we'll only carry out modelling once we're confident that your development will proceed.

In order to have this confidence, we'll need to know that you **own the land and have either outline or full planning permission**. Please email this information to us as soon as you have it.

If you'd like us to start modelling work ahead of this point, we can do this if you agree to underwrite the cost of modelling and design. That means we'll fund the work – but you agree to pay the cost if you don't achieve first occupancy within five years.

I've attached an example of our underwriting agreement. Please call me on the number below if you'd like to discuss this or want to request a copy of the agreement to complete.

If the modelling shows we need to carry out reinforcement work, then before we start construction we'll need you to supply us with notification that you've confirmed your F10 – Notification of construction project - submission to the Health and Safety Executive.

Surface Water

Please note that discharging surface water to the public sewer network should only be considered after all other methods of disposal have been investigated and proven to not be viable. In accordance with the Building Act 2000 Clause H3.3, positive connection to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. The disposal hierarchy being: 1st Soakaways; 2nd Watercourses; 3rd Sewers.

Only when it can be proven that soakage into the ground or a connection into an adjacent watercourse is not possible would we consider a restricted discharge into the public surface water sewer network.

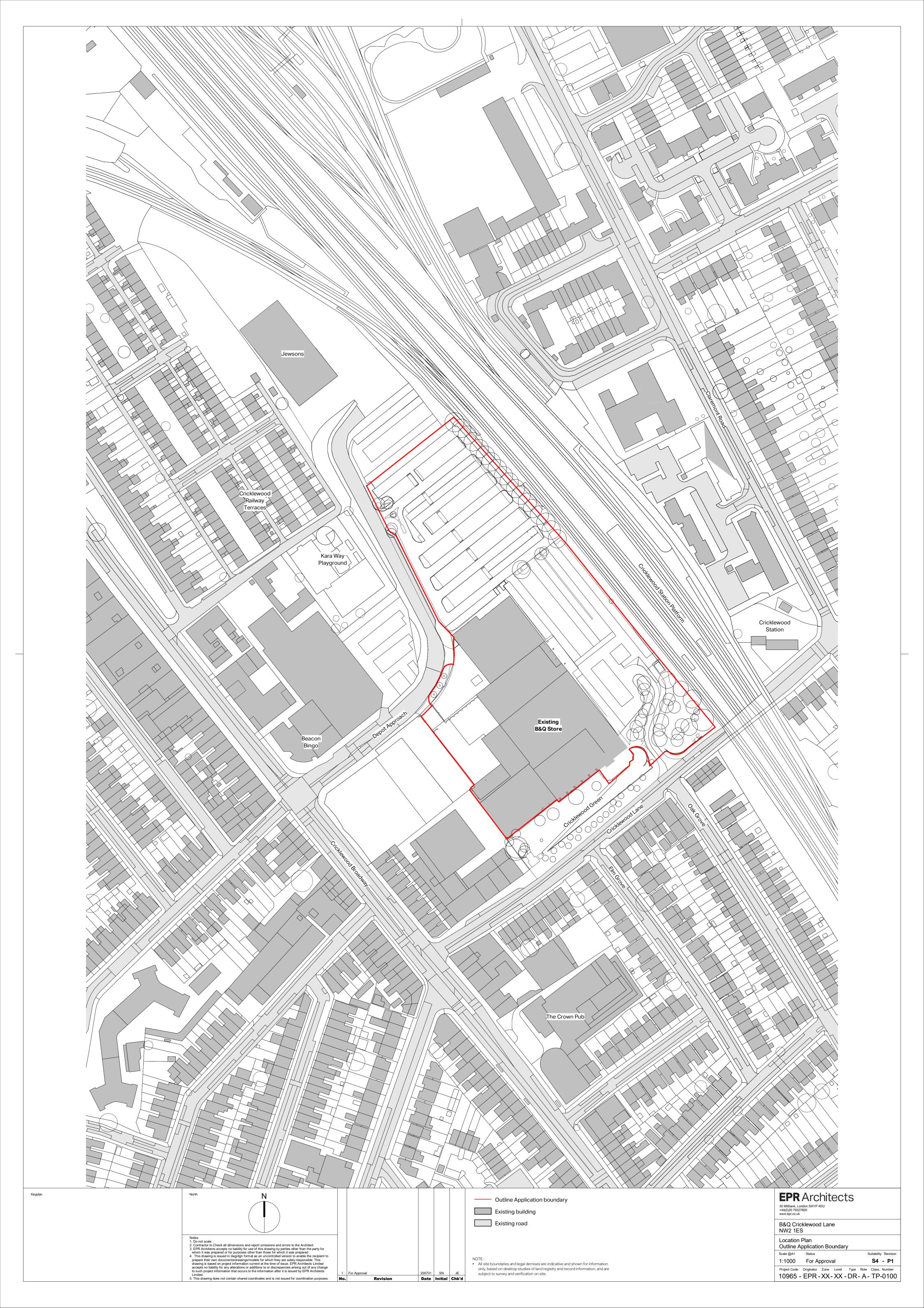
Thames Water Planning team would ask to see why it is not practicable on the site to restrict to Greenfield run-off rates if they are consulted as part of any planning application.

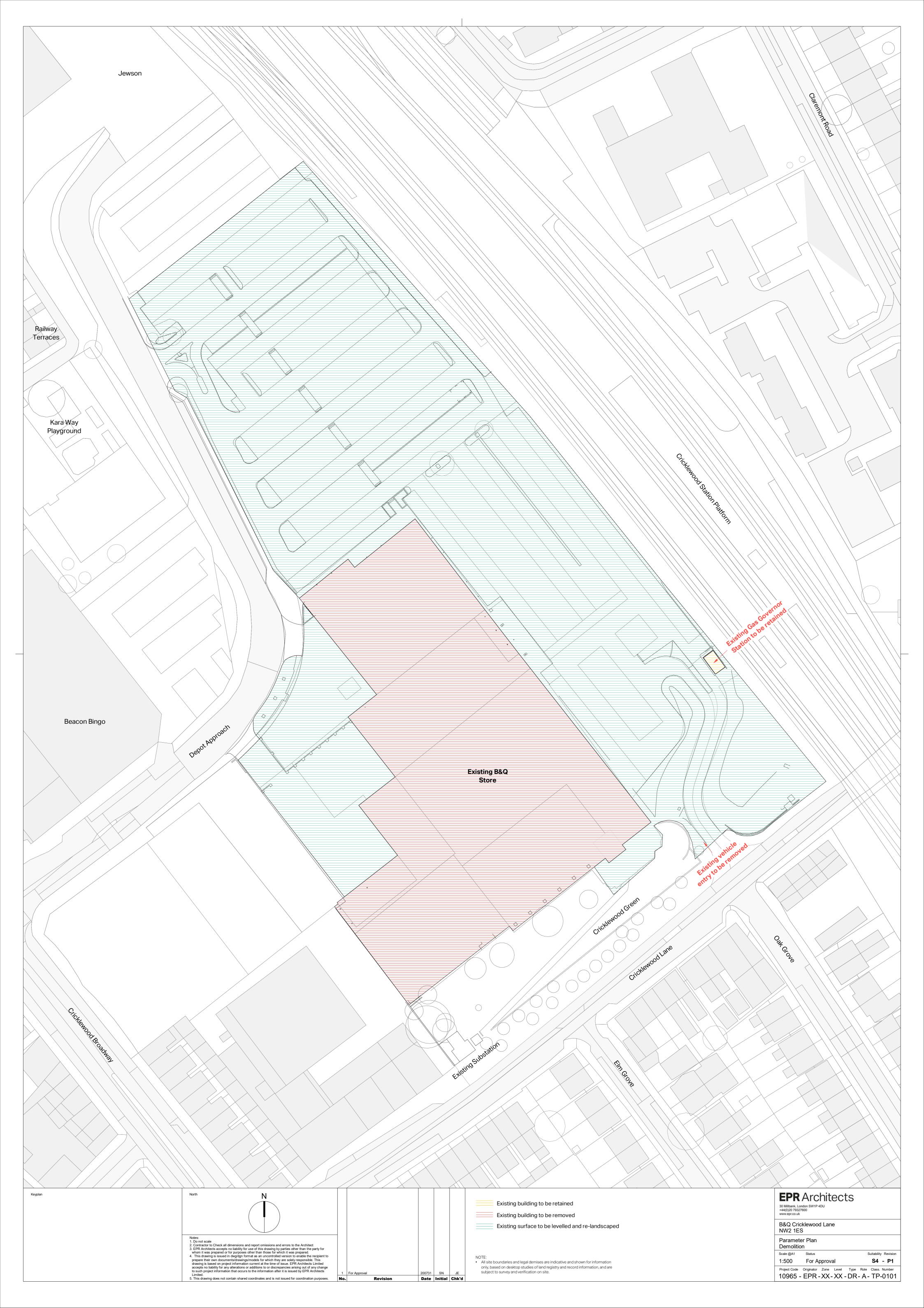
In considering your surface water needs, we support the use of sustainable drainage on development sites. You'll need to show the local authority and/or lead local flood authority how you've taken into account the surface water hierarchy that we've included.

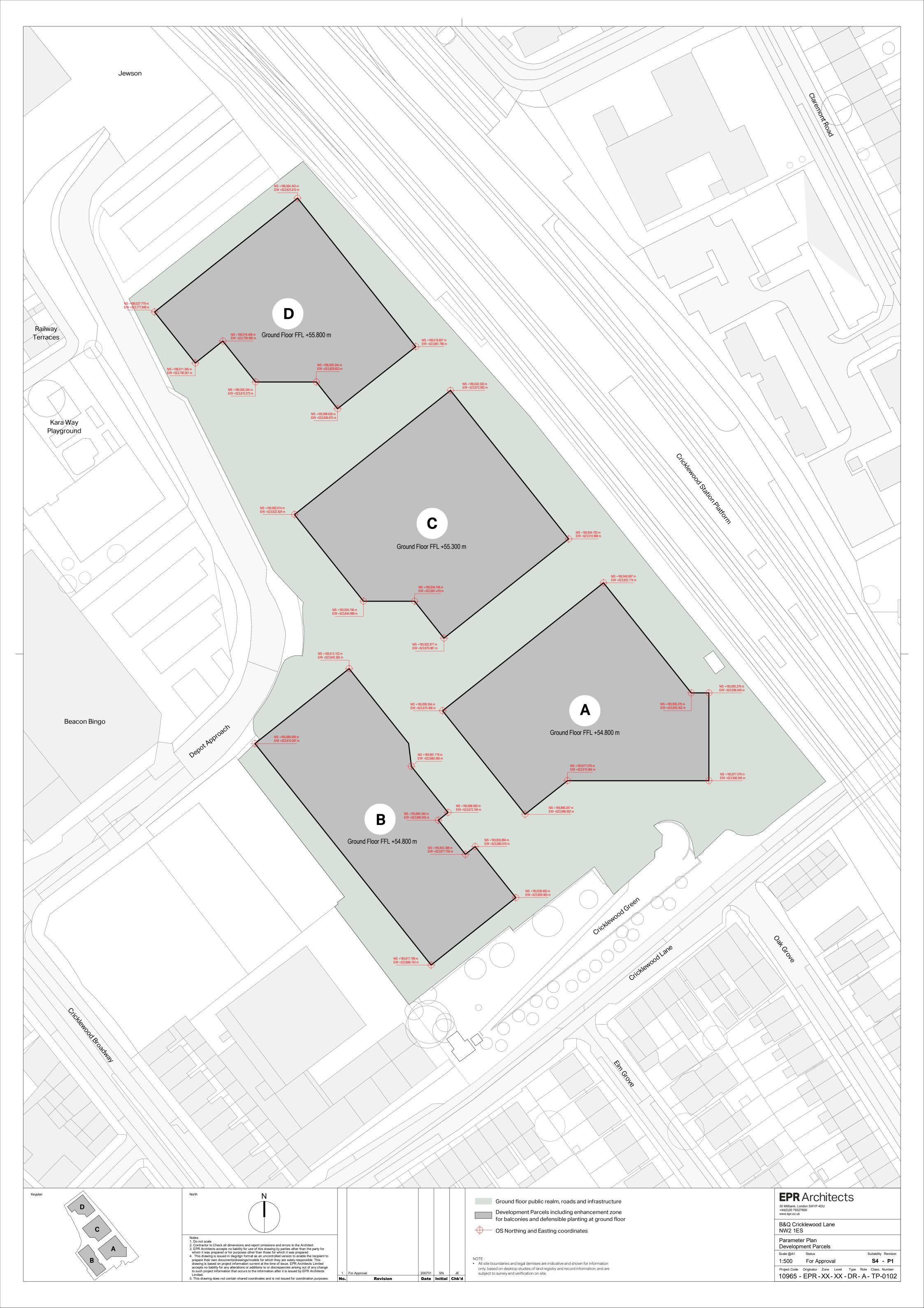
Please see the attached 'Planning your wastewater' leaflet for additional information.

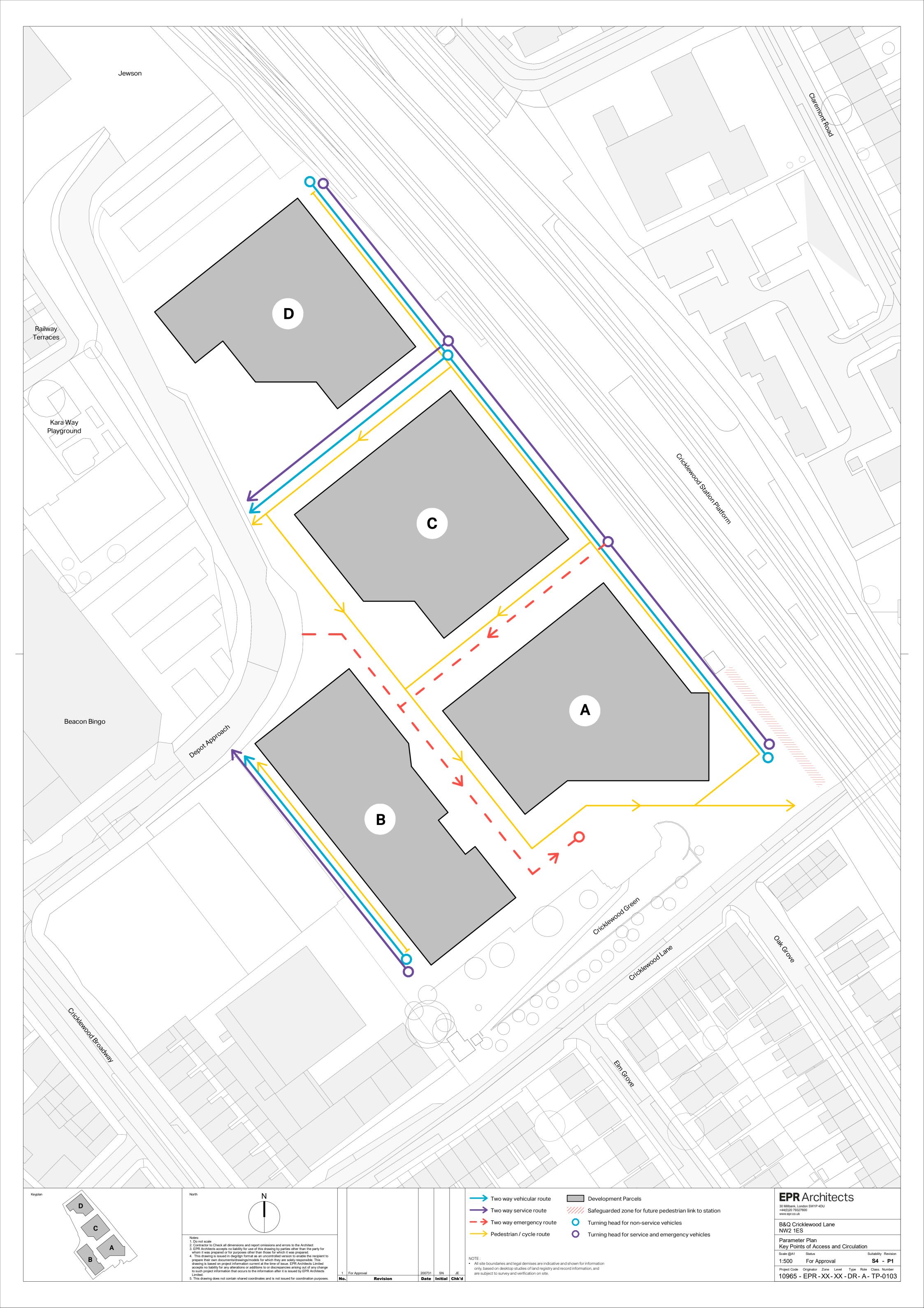
What do I need to do next?

Please note that you must keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient supply capacity.


If you have any further questions, please contact me on 02035779212.


Yours sincerely


Dan Rees Thames Water


Appendix F Proposed Development

